Abstract

The brilliant visible colors of various hot springs and pools in Yellowstone National Park are explained with a combination of scattering from the water and from microbial mats that coat the bottoms of these thermal features. A simple 1D radiative transfer model was used to simulate the colors recorded in visible photographs and the spectrum of light making up these colors. The model includes attenuation in water by absorption and molecular scattering as well as reflection characteristics of the microbial mats and surface reflection of the water. Pool geometries are simulated as simple rough cones scaled to have depths and widths that match published data. Thermal images are also used to record the spatial distribution of water skin temperature. The measurements and simulations confirm that colors observed from shallow-water features arise primarily from the spectral properties of the microbial mat, which is related to the water temperature, while colors observed from deeper water arise primarily from the wavelength-dependent absorption and scattering in the water.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brody and W. Tomkiewicz, “Park visitors’ understandings, values and beliefs related to their experience at Midway Geyser Basin, Yellowstone National Park, USA,” Int. J. Sci. Ed. 24, 1119–1141 (2002).
    [Crossref]
  2. F. V. Hayden, Preliminary Report of the United States Geological Survey of Montana and Portions of Adjacent Territories; Being a Annual Report Of Progress (U.S. Government Printing Office, 1872).
  3. C. Schreier, A Field Guide to Yellowstone’s Geysers, Hot Springs, and Fumaroles (Homestead, 1992).
  4. Yellowstone National Park Research Coordination Network, http://www.rcn.montana.edu/ .
  5. D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).
  6. T. D. Brock, “Life at high temperatures,” Science 230, 132–138 (1985).
    [Crossref]
  7. J. J. Copeland, “Yellowstone thermal myxophyceae,” Ann. N.Y. Acad. Sci. 36, 4–223 (1936).
    [Crossref]
  8. W. H. Weed, “The vegetation of hot springs,” Am. Nat. 23, 394–400 (1889).
    [Crossref]
  9. K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).
  10. R. W. Renaut and B. Jones, “Microbial precipitates around continental hot springs and geysers,” in Microbial Sediments, R. Riding and S. Awramik, eds. (Springer, 2000), pp. 187–195.
  11. R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.
  12. S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
    [Crossref]
  13. A. Cox, E. L. Shock, and J. R. Havig, “The transition to microbial photosynthesis in hot spring ecosystems,” Chem. Geol. 280, 344–351 (2011).
    [Crossref]
  14. T. Nakagawa and M. Fukui, “Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient,” J. Gen Appl. Microbiol. 48, 211–222 (2002).
  15. R. W. Castenholz, J. Bauld, and B. B. Jørgenson, “Anoxygenic microbial mat of hot springs: thermophilic chlorobium sp.,” FEMS Microbiol. Lett. 74, 325–336 (1990).
    [Crossref]
  16. C. T. Brues, “Animal life in hot springs,” Q. Rev. Biol. 2, 181–203 (1927).
    [Crossref]
  17. A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
    [Crossref]
  18. C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
    [Crossref]
  19. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
    [Crossref]
  20. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
    [Crossref]
  21. G. N. Plass, T. J. Humphreys, and G. W. Kattawar, “Color of the ocean,” Appl. Opt. 17, 1432–1446 (1978).
    [Crossref]
  22. A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
    [Crossref]
  23. C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).
  24. A. Albert and C. D. Mobley, “An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters,” Opt. Express 11, 2873–2890 (2003).
    [Crossref]
  25. Y. Oyama and A. Shibahara, “Simulation of water colors in a shallow acidified lake, Lake Onneto, Japan, using colorimetric analysis and bio-optical modeling,” Limnology 10, 47–56 (2009).
    [Crossref]
  26. D. Mobley, “Optical properties of water,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. 2nd ed., Vol. I (McGraw-Hill, 1995), Chap. 43.
  27. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
    [Crossref]
  28. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).
  29. SNOTEL Data: Station 384 Canyon, Wyoming, United States Department of Agriculture, Natural Resources Conservation Service, http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=384 (2014).
  30. P. Tans, NOAA/ESRL ( www.esrl.noaa.gov/gmd/ccgg/trends/ ) and R. Keeling, Scripps Institution of Oceanography ( scrippsco2.ucsd.edu/ ).
  31. A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
    [Crossref]

2013 (1)

K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).

2011 (1)

A. Cox, E. L. Shock, and J. R. Havig, “The transition to microbial photosynthesis in hot spring ecosystems,” Chem. Geol. 280, 344–351 (2011).
[Crossref]

2010 (1)

C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).

2009 (1)

Y. Oyama and A. Shibahara, “Simulation of water colors in a shallow acidified lake, Lake Onneto, Japan, using colorimetric analysis and bio-optical modeling,” Limnology 10, 47–56 (2009).
[Crossref]

2007 (2)

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

2005 (1)

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

2003 (2)

A. Albert and C. D. Mobley, “An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters,” Opt. Express 11, 2873–2890 (2003).
[Crossref]

R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.

2002 (3)

S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
[Crossref]

T. Nakagawa and M. Fukui, “Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient,” J. Gen Appl. Microbiol. 48, 211–222 (2002).

M. Brody and W. Tomkiewicz, “Park visitors’ understandings, values and beliefs related to their experience at Midway Geyser Basin, Yellowstone National Park, USA,” Int. J. Sci. Ed. 24, 1119–1141 (2002).
[Crossref]

1998 (1)

D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

1994 (1)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

1993 (1)

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

1990 (1)

R. W. Castenholz, J. Bauld, and B. B. Jørgenson, “Anoxygenic microbial mat of hot springs: thermophilic chlorobium sp.,” FEMS Microbiol. Lett. 74, 325–336 (1990).
[Crossref]

1985 (1)

T. D. Brock, “Life at high temperatures,” Science 230, 132–138 (1985).
[Crossref]

1982 (1)

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

1981 (1)

1978 (1)

1936 (1)

J. J. Copeland, “Yellowstone thermal myxophyceae,” Ann. N.Y. Acad. Sci. 36, 4–223 (1936).
[Crossref]

1927 (1)

C. T. Brues, “Animal life in hot springs,” Q. Rev. Biol. 2, 181–203 (1927).
[Crossref]

1889 (1)

W. H. Weed, “The vegetation of hot springs,” Am. Nat. 23, 394–400 (1889).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Albert, A.

Anderson, G. P.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).

Babin, M.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Baker, K. S.

Bateson, M. M.

R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.

D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

Bauld, J.

R. W. Castenholz, J. Bauld, and B. B. Jørgenson, “Anoxygenic microbial mat of hot springs: thermophilic chlorobium sp.,” FEMS Microbiol. Lett. 74, 325–336 (1990).
[Crossref]

Berk, A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Bernstein, L. S.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Borel, C. C.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Bresciani, M.

C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).

Bricaud, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Brock, T. D.

T. D. Brock, “Life at high temperatures,” Science 230, 132–138 (1985).
[Crossref]

Brody, M.

M. Brody and W. Tomkiewicz, “Park visitors’ understandings, values and beliefs related to their experience at Midway Geyser Basin, Yellowstone National Park, USA,” Int. J. Sci. Ed. 24, 1119–1141 (2002).
[Crossref]

Brues, C. T.

C. T. Brues, “Animal life in hot springs,” Q. Rev. Biol. 2, 181–203 (1927).
[Crossref]

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Burggraf, S.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Carpenter, L.

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Castenholz, R. W.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

R. W. Castenholz, J. Bauld, and B. B. Jørgenson, “Anoxygenic microbial mat of hot springs: thermophilic chlorobium sp.,” FEMS Microbiol. Lett. 74, 325–336 (1990).
[Crossref]

Chetwynd, J. H.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).

Claustre, H.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).

Cooley, T. W.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Copeland, J. J.

J. J. Copeland, “Yellowstone thermal myxophyceae,” Ann. N.Y. Acad. Sci. 36, 4–223 (1936).
[Crossref]

Cox, A.

A. Cox, E. L. Shock, and J. R. Havig, “The transition to microbial photosynthesis in hot spring ecosystems,” Chem. Geol. 280, 344–351 (2011).
[Crossref]

D’Imperio, S.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

De León, K. B.

K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Ferris, M. J.

D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

Fiala, G.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Fields, M. W.

K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).

Fournier, A.

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Fox, M.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Frank, S. D.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

Fukui, M.

T. Nakagawa and M. Fukui, “Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient,” J. Gen Appl. Microbiol. 48, 211–222 (2002).

Fussell, D.

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Gardner, J. A.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Gentili, B.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Gerlach, R.

K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).

Giardino, C.

C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

Havig, J. R.

A. Cox, E. L. Shock, and J. R. Havig, “The transition to microbial photosynthesis in hot spring ecosystems,” Chem. Geol. 280, 344–351 (2011).
[Crossref]

Hayden, F. V.

F. V. Hayden, Preliminary Report of the United States Geological Survey of Montana and Portions of Adjacent Territories; Being a Annual Report Of Progress (U.S. Government Printing Office, 1872).

Hoke, M. L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Huber, G.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Huber, R.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Humphreys, T. J.

Jones, B.

R. W. Renaut and B. Jones, “Microbial precipitates around continental hot springs and geysers,” in Microbial Sediments, R. Riding and S. Awramik, eds. (Springer, 2000), pp. 187–195.

Jørgenson, B. B.

R. W. Castenholz, J. Bauld, and B. B. Jørgenson, “Anoxygenic microbial mat of hot springs: thermophilic chlorobium sp.,” FEMS Microbiol. Lett. 74, 325–336 (1990).
[Crossref]

Kalinin, A. V.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

Kattawar, G. W.

Kawamura, T.

S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
[Crossref]

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).

Lee, J.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Lehr, C. R.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

Lewis, P. E.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Lockwood, R. B.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

McDermott, T. R.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

Mobley, C. D.

Mobley, D.

D. Mobley, “Optical properties of water,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. 2nd ed., Vol. I (McGraw-Hill, 1995), Chap. 43.

Morel, A.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Muratov, L.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Nakagawa, T.

T. Nakagawa and M. Fukui, “Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient,” J. Gen Appl. Microbiol. 48, 211–222 (2002).

Nold, S. C.

D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

Norris, T. B.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

Oggioni, A.

C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).

Ohsawa, S.

S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
[Crossref]

Oyama, Y.

Y. Oyama and A. Shibahara, “Simulation of water colors in a shallow acidified lake, Lake Onneto, Japan, using colorimetric analysis and bio-optical modeling,” Limnology 10, 47–56 (2009).
[Crossref]

Papke, R. T.

R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.

Peyton, B. M.

K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).

Plass, G. N.

Pley, U.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Ramsing, N. B.

R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.

Ras, J.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Renaut, R. W.

R. W. Renaut and B. Jones, “Microbial precipitates around continental hot springs and geysers,” in Microbial Sediments, R. Riding and S. Awramik, eds. (Springer, 2000), pp. 187–195.

Schreier, C.

C. Schreier, A Field Guide to Yellowstone’s Geysers, Hot Springs, and Fumaroles (Homestead, 1992).

Segrer, A. H.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).

Shibahara, A.

Y. Oyama and A. Shibahara, “Simulation of water colors in a shallow acidified lake, Lake Onneto, Japan, using colorimetric analysis and bio-optical modeling,” Limnology 10, 47–56 (2009).
[Crossref]

Shock, E. L.

A. Cox, E. L. Shock, and J. R. Havig, “The transition to microbial photosynthesis in hot spring ecosystems,” Chem. Geol. 280, 344–351 (2011).
[Crossref]

Smith, R. C.

Stetter, K. O.

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Takamatsu, N.

S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
[Crossref]

Tieche, F.

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Tomkiewicz, W.

M. Brody and W. Tomkiewicz, “Park visitors’ understandings, values and beliefs related to their experience at Midway Geyser Basin, Yellowstone National Park, USA,” Int. J. Sci. Ed. 24, 1119–1141 (2002).
[Crossref]

Toplin, J. A.

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

Ward, D. M.

R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.

D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

Weed, W. H.

W. H. Weed, “The vegetation of hot springs,” Am. Nat. 23, 394–400 (1889).
[Crossref]

Yan, H.

C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).

Yusa, Y.

S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
[Crossref]

Am. Nat. (1)

W. H. Weed, “The vegetation of hot springs,” Am. Nat. 23, 394–400 (1889).
[Crossref]

Ann. N.Y. Acad. Sci. (1)

J. J. Copeland, “Yellowstone thermal myxophyceae,” Ann. N.Y. Acad. Sci. 36, 4–223 (1936).
[Crossref]

Appl. Opt. (2)

Chem. Geol. (1)

A. Cox, E. L. Shock, and J. R. Havig, “The transition to microbial photosynthesis in hot spring ecosystems,” Chem. Geol. 280, 344–351 (2011).
[Crossref]

Commun. ACM (1)

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Environ. Microbiol. (1)

R. T. Papke, N. B. Ramsing, M. M. Bateson, and D. M. Ward, “Geographical isolation in hot spring cyanobacteria,” Environ. Microbiol. 5, 650–659, 2003.

FEMS Microbiol. Lett. (1)

R. W. Castenholz, J. Bauld, and B. B. Jørgenson, “Anoxygenic microbial mat of hot springs: thermophilic chlorobium sp.,” FEMS Microbiol. Lett. 74, 325–336 (1990).
[Crossref]

Front. Microbiol. (1)

K. B. De León, R. Gerlach, B. M. Peyton, and M. W. Fields, “Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park,” Front. Microbiol. 4, 1–10 (2013).

Int. J. Sci. Ed. (1)

M. Brody and W. Tomkiewicz, “Park visitors’ understandings, values and beliefs related to their experience at Midway Geyser Basin, Yellowstone National Park, USA,” Int. J. Sci. Ed. 24, 1119–1141 (2002).
[Crossref]

J. Gen Appl. Microbiol. (1)

T. Nakagawa and M. Fukui, “Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient,” J. Gen Appl. Microbiol. 48, 211–222 (2002).

J. Phycol. (1)

C. R. Lehr, S. D. Frank, T. B. Norris, S. D’Imperio, A. V. Kalinin, J. A. Toplin, R. W. Castenholz, and T. R. McDermott, “Cyandia (Cyanidiales) population diversity and dynamics in an acid-sulfate-chloride spring in Yellowstone National Park,” J. Phycol. 43, 3–14 (2007).
[Crossref]

J. Volcanol. Geotherm. Res. (1)

S. Ohsawa, T. Kawamura, N. Takamatsu, and Y. Yusa, “Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water,” J. Volcanol. Geotherm. Res. 113, 49–60 (2002).
[Crossref]

Limnol. Oceanogr. (1)

A. Morel, B. Gentili, H. Claustre, M. Babin, A. Bricaud, J. Ras, and F. Tieche, “Optical properties of the “clearest” natural waters,” Limnol. Oceanogr. 52, 217–229 (2007).
[Crossref]

Limnology (1)

Y. Oyama and A. Shibahara, “Simulation of water colors in a shallow acidified lake, Lake Onneto, Japan, using colorimetric analysis and bio-optical modeling,” Limnology 10, 47–56 (2009).
[Crossref]

Microbiol. Mol. Biol. Rev. (1)

D. M. Ward, M. J. Ferris, S. C. Nold, and M. M. Bateson, “A natural view of microbial biodiversity within hot spring cyanobacterial mat communities,” Microbiol. Mol. Biol. Rev. 62, 1353–1370 (1998).

Mt. Res. Dev. (1)

C. Giardino, A. Oggioni, M. Bresciani, and H. Yan, “Remote sensing of suspended particulate matter in Himalayan lakes: a case study of alpine lakes in the Mount Everest region,” Mt. Res. Dev. 30, 157–168 (2010).

Opt. Express (1)

Orig. Life Evol. Biosph. (1)

A. H. Segrer, S. Burggraf, G. Fiala, G. Huber, R. Huber, U. Pley, and K. O. Stetter, “Life in hot springs and hydrothermal vents,” Orig. Life Evol. Biosph. 23, 77–90 (1993).
[Crossref]

Proc. SPIE (2)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[Crossref]

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, and P. E. Lewis, “MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update,” Proc. SPIE 5806, 662–667 (2005).
[Crossref]

Q. Rev. Biol. (1)

C. T. Brues, “Animal life in hot springs,” Q. Rev. Biol. 2, 181–203 (1927).
[Crossref]

Science (1)

T. D. Brock, “Life at high temperatures,” Science 230, 132–138 (1985).
[Crossref]

Other (8)

R. W. Renaut and B. Jones, “Microbial precipitates around continental hot springs and geysers,” in Microbial Sediments, R. Riding and S. Awramik, eds. (Springer, 2000), pp. 187–195.

F. V. Hayden, Preliminary Report of the United States Geological Survey of Montana and Portions of Adjacent Territories; Being a Annual Report Of Progress (U.S. Government Printing Office, 1872).

C. Schreier, A Field Guide to Yellowstone’s Geysers, Hot Springs, and Fumaroles (Homestead, 1992).

Yellowstone National Park Research Coordination Network, http://www.rcn.montana.edu/ .

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120  km),” , Environmental Research Papers (U.S. A.F. Geophysical Laboratory), 954 (1986), available from National Technical Information Service, Alexandria, Virginia ( www.ntis.gov ) (also available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA175173 ).

SNOTEL Data: Station 384 Canyon, Wyoming, United States Department of Agriculture, Natural Resources Conservation Service, http://www.wcc.nrcs.usda.gov/nwcc/site?sitenum=384 (2014).

P. Tans, NOAA/ESRL ( www.esrl.noaa.gov/gmd/ccgg/trends/ ) and R. Keeling, Scripps Institution of Oceanography ( scrippsco2.ucsd.edu/ ).

D. Mobley, “Optical properties of water,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, eds. 2nd ed., Vol. I (McGraw-Hill, 1995), Chap. 43.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Pure water optical properties: (a) absorption coefficient α in m1; and (b) scattering coefficient b in m1 [20].

Fig. 2.
Fig. 2.

Graphical depiction of the terms making up the model of observed upwelling spectral irradiance E(λ): diffuse skylight spectral irradiance Esky(λ) reflected from the water (gray arrow); solar spectral irradiance Esun(λ) reflected from the bottom (yellow arrow); and sunlight scattered within the water (dashed blue arrow). For clarity of the description, only a few paths of the upwelling light are shown.

Fig. 3.
Fig. 3.

(a) Photograph of Grand Prismatic Spring in YNP, showing the orange and yellow colors of the microbial mats in the shallow waters surrounding the pool and greens and blues in the deeper waters of the pool. (b) Thermal image of Grand Prismatic Spring using 8 stitched images from a FLIR Photon 640 infrared camera. The image displays low temperatures in blue and high temperatures in red.

Fig. 4.
Fig. 4.

(a) Photograph of the orange and brown microbial mats found in the outflows of Grand Prismatic Spring and (b) associated spectral measurements. The “o” and “b” in the photograph mark the locations of the orange and brown spectra.

Fig. 5.
Fig. 5.

Simulation of Grand Prismatic Spring for a viewing angle of 80° for comparison with Fig. 3(a). The simple model nicely reproduces the observed yellow-to-turqoise-green and then blue color gradient from the edge to the center of the pool.

Fig. 6.
Fig. 6.

(a) Photograph of Morning Glory Pool (Upper Geyser Basin) and (b) spectra recorded at the positions indicated in the photo (“o” = orange, “y” = yellow, “g” = green, “c” = center).

Fig. 7.
Fig. 7.

Simulated color image for Morning Glory Pool using 7 m depth with a single-species yellow cyanobacteria mat whose spectrum was measured in shallow waters near the pool edge.

Fig. 8.
Fig. 8.

Simulated color image for a historic Morning Glory Pool that had higher water temperature and no microbial mat.

Fig. 9.
Fig. 9.

Simulated (upper red) and measured (lower blue) reflection spectra for the center of Morning Glory Pool. The comparison shows good agreement, with a mean reflectance difference of 1.8% and an RMS reflectance difference of 3.4%.

Fig. 10.
Fig. 10.

(a) Photograph and (b) spectrum measured near the dark center of Sapphire Pool.

Fig. 11.
Fig. 11.

Simulated color image for Sapphire Pool with no microbial mat.

Fig. 12.
Fig. 12.

Simulated (upper red at short wavelengths) and measured (lower blue at short wavelengths) reflection spectra for the center of Sapphire Pool. The mean reflectance difference is 1.4% and the RMS difference is 6.5%.

Fig. 13.
Fig. 13.

(a) Photograph and (b) thermal IR image of a shallow Sapphire Pool outflow (Biscuit Basin). The color change from orange (o) and brown (b) at the edges to yellow–green (y) at the center corresponds closely to the respective temperatures. The dashed gray line is the location of the temperature profile shown in Fig. 14(b).

Fig. 14.
Fig. 14.

(a) Spectra measured from the Sapphire Pool outflow in Biscuit Basin at locations marked on Fig. 13(a); (b) water skin temperature profile across the shallow outflow water at the location marked in Fig. 13(b). The profile is plotted such that the color of the line matches the color of the microbial mat expected at each range of water temperatures. The outer edges of the temperature-profile line are gray, representing bare rock.

Fig. 15.
Fig. 15.

Beauty Pool (Upper Geyser Basin): (a) photograph and (b) spectra measured at locations indicated in (a).

Fig. 16.
Fig. 16.

Chromatic Pool (Upper Geyser Basin): (a) photograph and (b) spectra measured at locations indicated on the image.

Fig. 17.
Fig. 17.

Belgian Pool (Upper Geyser Basin): (a) photograph and (b) spectra measured at locations indicated on the image.

Tables (1)

Tables Icon

Table 1. Biological Colors and Associated Temperatures in YNP

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(λ)=Esky(λ)Rw+Esun(λ)(1Rw)2RmatTw2+Escattered(λ),
Tw2(λ)=e(a+b2)2z,
Escattered(λ)=Esun(λ)(1Rw)2n=0z/Δle2(a+b2)nΔz(1eb2Δz).

Metrics