Abstract

We report on supercontinuum generation in a highly nonlinear fiber (HNLF) pumped by noise-like pulses (NLPs) emitted from a compact fiber ring laser. The compact erbium-doped fiber ring laser is constructed by using an optical integrated component and mode-locked by the nonlinear polarization rotation technique. The laser produces NLPs with a 3-dB spectral bandwidth of 60.2 nm, repetition rate of 9.36 MHz, and pulse energy of 2.8 nJ. Numerical simulations reproduce the generation of NLPs in the experiment. The NLPs are then launched into a 110-m-long HNLF and a supercontinuum with a 20-dB spectral width over 500 nm is obtained. Such a simple and inexpensive supercontinuum-generation system is a potential alternative for various practical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses

Shih-Shian Lin, Sheng-Kwang Hwang, and Jia-Ming Liu
Opt. Express 22(4) 4152-4160 (2014)

Generation of noise-like pulses with 203 nm 3-dB bandwidth

Xuan Wang, Andrey Komarov, Mariusz Klimczak, Lei Su, Dingyuan Tang, Deyuan Shen, Lei Li, and Luming Zhao
Opt. Express 27(17) 24147-24153 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription