Abstract

In this paper, we propose and demonstrate a novel approach to enhance the refractive index (RI) sensitivity and eliminate the temperature cross-sensitivity of a long-period grating (LPG) -based refractive index sensor by bent-fiber interference. The approach is based on a hybrid structure composed of an LPG and a bent-fiber intermodal interferometer. The bent-fiber intermodal interferometer has a simple structure, which consists of a bare fiber semi-circular bending region with a 5 mm bending radius. As the RI increases, the resonance wavelength of the LPG moves toward a shorter wavelength, while the resonance wavelength of the bent-fiber intermodal interferometer shifts to a longer wavelength. The separation of two resonance dips increases with the RI; using two resonance dips allows us to measure an RI with a higher sensitivity than if we had only used one resonance dip. However, as the temperature increases, the separation of the two resonance dips is constant. This approach can effectively enhance the RI sensitivity and eliminate temperature cross-sensitivity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-series double cladding fibers for simultaneous refractive index and temperature measurement

Huanhuan Liu, Fufei Pang, Hairui Guo, Wenxin Cao, Yunqi Liu, Na Chen, Zhenyi Chen, and Tingyun Wang
Opt. Express 18(12) 13072-13082 (2010)

V-groove all-fiber core-cladding intermodal interferometer for high-temperature sensing

Zhen Yin, Youfu Geng, Xuejin Li, Xiaoling Tan, and Rong Gao
Appl. Opt. 54(2) 319-323 (2015)

Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers

Jixuan Wu, Yinping Miao, Binbin Song, Kailiang Zhang, Wei Lin, Hao Zhang, Bo Liu, and Jianquan Yao
Appl. Opt. 53(22) 5037-5041 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription