Abstract

This paper shows an efficient adaptation of a polarization diversity optical front-end, commonly used in high-speed fiber-optic communications, in a coherent Doppler lidar (CDL). The adopted architecture can be employed in a modified transceiver design for an all-fiber micropulsed coherent Doppler wind lidar where the performance limits of such systems are pushed beyond the conventionally available wind CDLs. As a result, either a longer measurement range, crucial in clear-air environments with low concentration of aerosols, or a shorter integration time (resulting in a faster scanning) can be achieved. Alternatively, in certain aerosol loading conditions where the presence of nonspherical aerosols is considerable, the system can be reconfigured on the fly to analyze the cross polarization of the backscatter optical signal. The result is the capability to analyze the nature of aerosol particles for the detected range of interest. Due to full utilization of the backscatter signal, i.e., detection of co-polarization and cross polarization components, the signal-to-noise-ratio (SNR) as well as detection range is improved in this configuration. Moreover, the system is capable of providing a more reliable estimation of the aerosol backscatter coefficient when compared with the contemporary CDLs. This system employs robust and compact all-fiber subsystems, which are cost effective and widely available as off-the-shelf components.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
An all-fiber image-reject homodyne coherent Doppler wind lidar

Cyrus F. Abari, Anders T. Pedersen, and Jakob Mann
Opt. Express 22(21) 25880-25894 (2014)

1.5 μm polarization coherent lidar incorporating time-division multiplexing

Chong Wang, Haiyun Xia, Mingjia Shangguan, Yunbin Wu, Lu Wang, Lijie Zhao, Jiawei Qiu, and Renjun Zhang
Opt. Express 25(17) 20663-20674 (2017)

Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control

Peter John Rodrigo and Christian Pedersen
Opt. Express 18(5) 5320-5327 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. O. Hulburt, “Observations of a searchlight beam to an altitude of 28 kilometers,” Appl. Opt. 27, 377–382 (1937).
  2. E. A. Johnson, R. C. Meyer, R. E. Hopkins, and W. H. Mock, “The measurement of light scattered by the upper atmosphere from a search-light beam,” Appl. Opt. 29, 512–517 (1939).
  3. X. Chu, W. Pan, G. C. Papen, C. S. Gardner, and J. A. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
    [Crossref]
  4. X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds., (CRC Press, 2005), pp. 179–432.
  5. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [Crossref]
  6. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Appl. Opt. 19, 234–236 (1994).
  7. R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
    [Crossref]
  8. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
    [Crossref]
  9. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).
  10. C. J. Karlsson, F. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55  m for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
    [Crossref]
  11. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450 (2002).
    [Crossref]
  12. S. M. Spuler, D. Richter, M. P. Spowart, and K. Rieken, “Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence,” Appl. Opt. 50, 842–851 (2011).
    [Crossref]
  13. “WINDCUBE V2, a 200  m vertical wind Doppler lidar,” http://www.leosphere.com/products/vertical-profiling/windcube-v2 , 2015.
  14. “ZephIR 300 technical specifications,” http://www.zephirlidar.com/resources/technical-specs , 2015.
  15. “Halo photonics pulsed Doppler LiDAR,” http://halo-photonics.com , 2015.
  16. T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
    [Crossref]
  17. C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22, 25880–25894 (2014).
    [Crossref]
  18. C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).
  19. “COH28 dual-polarization 90° optical hybrid,” http://kylia.com/?portfolio=90-hybrid-coh , 2015.
  20. C. M. Sonnenschein and F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [Crossref]
  21. S. F. Clifford and L. Lading, “Monostatic diffraction-limited lidars: the impact of optical refractive turbulence,” Appl. Opt. 22, 1696–1701 (1983).
    [Crossref]
  22. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [Crossref]
  23. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967).
    [Crossref]
  24. R. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
    [Crossref]
  25. I. Goldstein, P. A. Miles, and A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE 53, 1172–1180 (1965).
    [Crossref]
  26. A. Belmonte and B. J. Rye, “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000).
    [Crossref]
  27. A. Dabas, P. H. Flamant, and P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
    [Crossref]
  28. A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49, 6737–6748 (2010).
    [Crossref]
  29. T. Matsumoto and K. Sato, “Polarization-independent optical circulator: an experiment,” Appl. Opt. 19, 108–112 (1980).
    [Crossref]
  30. M. Koga and T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol. 10, 1210–1217 (1992).
    [Crossref]
  31. R. Frehlich and M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
    [Crossref]
  32. B. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” Appl. Opt. 7, 2199–2207 (1990).
  33. H. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16, 3931–3948 (2008).
    [Crossref]
  34. J. M. Roth, R. E. Bland, and S. I. Libby, “Large-aperture wide field of view optical circulators,” IEEE Photon. Technol. Lett. 17, 2128–2130 (2005).
    [Crossref]
  35. H. T. Hui, “The performance of the maximum ratio combining method in correlated Rician-fading channels for antenna-diversity signal combining,” IEEE Trans. Antennas Propag. 53, 958–964 (2005).
    [Crossref]
  36. D. S. Zrnic, “Simulation of weatherlike Doppler spectra and signals,” J. Appl. Meteor. 14, 619–620 (1975).
    [Crossref]
  37. U.S. Standard Atmosphere (U.S. Government Printing Office, 1976).
  38. M. H. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, 1996), pp. 391–424.
  39. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
    [Crossref]

2015 (1)

C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).

2014 (2)

T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
[Crossref]

C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22, 25880–25894 (2014).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

2005 (2)

J. M. Roth, R. E. Bland, and S. I. Libby, “Large-aperture wide field of view optical circulators,” IEEE Photon. Technol. Lett. 17, 2128–2130 (2005).
[Crossref]

H. T. Hui, “The performance of the maximum ratio combining method in correlated Rician-fading channels for antenna-diversity signal combining,” IEEE Trans. Antennas Propag. 53, 958–964 (2005).
[Crossref]

2002 (2)

2000 (2)

1996 (1)

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

1994 (3)

P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Appl. Opt. 19, 234–236 (1994).

A. Dabas, P. H. Flamant, and P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[Crossref]

R. Frehlich and M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

1993 (2)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[Crossref]

R. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
[Crossref]

1992 (1)

M. Koga and T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol. 10, 1210–1217 (1992).
[Crossref]

1991 (1)

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

1990 (1)

B. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” Appl. Opt. 7, 2199–2207 (1990).

1989 (1)

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[Crossref]

1983 (2)

1980 (1)

1976 (1)

1975 (1)

D. S. Zrnic, “Simulation of weatherlike Doppler spectra and signals,” J. Appl. Meteor. 14, 619–620 (1975).
[Crossref]

1971 (1)

1967 (1)

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967).
[Crossref]

1965 (1)

I. Goldstein, P. A. Miles, and A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE 53, 1172–1180 (1965).
[Crossref]

1939 (1)

1937 (1)

E. O. Hulburt, “Observations of a searchlight beam to an altitude of 28 kilometers,” Appl. Opt. 27, 377–382 (1937).

Abari, C. F.

C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).

C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22, 25880–25894 (2014).
[Crossref]

Arshinov, Y. F.

Belmonte, A.

Bland, R. E.

J. M. Roth, R. E. Bland, and S. I. Libby, “Large-aperture wide field of view optical circulators,” IEEE Photon. Technol. Lett. 17, 2128–2130 (2005).
[Crossref]

Bobrovnikov, S. M.

Chabot, A.

I. Goldstein, P. A. Miles, and A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE 53, 1172–1180 (1965).
[Crossref]

Cho, H.

Chu, X.

X. Chu, W. Pan, G. C. Papen, C. S. Gardner, and J. A. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[Crossref]

X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds., (CRC Press, 2005), pp. 179–432.

Clifford, S. F.

Courtney, M.

T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
[Crossref]

Dabas, A.

Dellwik, E.

C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).

Eacock, J. R.

Eloranta, E. W.

P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Appl. Opt. 19, 234–236 (1994).

Flamant, P. H.

Frehlich, R.

R. Frehlich and M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

R. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
[Crossref]

Fried, D. L.

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967).
[Crossref]

Gardner, C. S.

Gelbwachs, J. A.

Goldstein, I.

I. Goldstein, P. A. Miles, and A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE 53, 1172–1180 (1965).
[Crossref]

Goodman, J. W.

Hale, C. P.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

Hardesty, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[Crossref]

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[Crossref]

Harris, M.

Hayes, M. H.

M. H. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, 1996), pp. 391–424.

Henderson, S. W.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

Hopkins, R. E.

Horrigan, F. A.

Hu, Y.

Huffaker, A. V.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

Huffaker, R. M.

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

Hui, H. T.

H. T. Hui, “The performance of the maximum ratio combining method in correlated Rician-fading channels for antenna-diversity signal combining,” IEEE Trans. Antennas Propag. 53, 958–964 (2005).
[Crossref]

Hulburt, E. O.

E. O. Hulburt, “Observations of a searchlight beam to an altitude of 28 kilometers,” Appl. Opt. 27, 377–382 (1937).

Johnson, E. A.

Karlsson, C. J.

Kattawar, G. W.

Kavaya, M. J.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

Koga, M.

M. Koga and T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol. 10, 1210–1217 (1992).
[Crossref]

Lading, L.

Letalick, D.

Libby, S. I.

J. M. Roth, R. E. Bland, and S. I. Libby, “Large-aperture wide field of view optical circulators,” IEEE Photon. Technol. Lett. 17, 2128–2130 (2005).
[Crossref]

Magee, J. R.

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

Mann, J.

C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).

T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
[Crossref]

C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22, 25880–25894 (2014).
[Crossref]

Matsumoto, T.

M. Koga and T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol. 10, 1210–1217 (1992).
[Crossref]

T. Matsumoto and K. Sato, “Polarization-independent optical circulator: an experiment,” Appl. Opt. 19, 108–112 (1980).
[Crossref]

Menzies, R. T.

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[Crossref]

Meyer, R. C.

Mikkelsen, T.

T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
[Crossref]

Miles, P. A.

I. Goldstein, P. A. Miles, and A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE 53, 1172–1180 (1965).
[Crossref]

Minnis, P.

Mitev, V. M.

Mock, W. H.

Nasiri, S. L.

Olsson, F.

Pan, W.

Papen, G.

X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds., (CRC Press, 2005), pp. 179–432.

Papen, G. C.

Pearson, G. N.

Pedersen, A. T.

C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).

C. F. Abari, A. T. Pedersen, and J. Mann, “An all-fiber image-reject homodyne coherent Doppler wind lidar,” Opt. Express 22, 25880–25894 (2014).
[Crossref]

Piironen, P.

P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Appl. Opt. 19, 234–236 (1994).

Richter, D.

Rieken, K.

Roberts, P. J.

Roth, J. M.

J. M. Roth, R. E. Bland, and S. I. Libby, “Large-aperture wide field of view optical circulators,” IEEE Photon. Technol. Lett. 17, 2128–2130 (2005).
[Crossref]

Rye, B.

B. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” Appl. Opt. 7, 2199–2207 (1990).

Rye, B. J.

A. Belmonte and B. J. Rye, “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000).
[Crossref]

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[Crossref]

Salamitou, P.

Sato, K.

Sjöholm, M.

T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
[Crossref]

Sonnenschein, C. M.

Spowart, M. P.

Spuler, S. M.

Trepte, C.

Winker, D.

Yadlowsky, M. J.

R. Frehlich and M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

Yang, P.

Zrnic, D. S.

D. S. Zrnic, “Simulation of weatherlike Doppler spectra and signals,” J. Appl. Meteor. 14, 619–620 (1975).
[Crossref]

Zuev, V. E.

Appl. Opt. (17)

E. O. Hulburt, “Observations of a searchlight beam to an altitude of 28 kilometers,” Appl. Opt. 27, 377–382 (1937).

E. A. Johnson, R. C. Meyer, R. E. Hopkins, and W. H. Mock, “The measurement of light scattered by the upper atmosphere from a search-light beam,” Appl. Opt. 29, 512–517 (1939).

X. Chu, W. Pan, G. C. Papen, C. S. Gardner, and J. A. Gelbwachs, “Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles,” Appl. Opt. 41, 4400–4410 (2002).
[Crossref]

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[Crossref]

P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Appl. Opt. 19, 234–236 (1994).

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Appl. Opt. 16, 773–775 (1991).

C. J. Karlsson, F. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55  m for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
[Crossref]

G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41, 6442–6450 (2002).
[Crossref]

S. M. Spuler, D. Richter, M. P. Spowart, and K. Rieken, “Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence,” Appl. Opt. 50, 842–851 (2011).
[Crossref]

C. M. Sonnenschein and F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
[Crossref]

S. F. Clifford and L. Lading, “Monostatic diffraction-limited lidars: the impact of optical refractive turbulence,” Appl. Opt. 22, 1696–1701 (1983).
[Crossref]

A. Belmonte and B. J. Rye, “Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems,” Appl. Opt. 39, 2401–2411 (2000).
[Crossref]

A. Dabas, P. H. Flamant, and P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[Crossref]

A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49, 6737–6748 (2010).
[Crossref]

T. Matsumoto and K. Sato, “Polarization-independent optical circulator: an experiment,” Appl. Opt. 19, 108–112 (1980).
[Crossref]

R. Frehlich, “Effects of refractive turbulence on coherent laser radar,” Appl. Opt. 32, 2122–2139 (1993).
[Crossref]

B. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” Appl. Opt. 7, 2199–2207 (1990).

Atmos. Meas. Tech. (1)

C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann, “Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar,” Atmos. Meas. Tech. 8, 4145–4153 (2015).

IEEE Photon. Technol. Lett. (1)

J. M. Roth, R. E. Bland, and S. I. Libby, “Large-aperture wide field of view optical circulators,” IEEE Photon. Technol. Lett. 17, 2128–2130 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (1)

H. T. Hui, “The performance of the maximum ratio combining method in correlated Rician-fading channels for antenna-diversity signal combining,” IEEE Trans. Antennas Propag. 53, 958–964 (2005).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[Crossref]

J. Appl. Meteor. (1)

D. S. Zrnic, “Simulation of weatherlike Doppler spectra and signals,” J. Appl. Meteor. 14, 619–620 (1975).
[Crossref]

J. Atmos. Oceanic Technol. (1)

R. Frehlich and M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[Crossref]

J. Lightwave Technol. (1)

M. Koga and T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol. 10, 1210–1217 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. (1)

T. Mikkelsen, J. Mann, M. Courtney, and M. Sjöholm, “Lidar-based research and innovation at DTU wind energy–a review,” J. Phys. 524, 012007 (2014).
[Crossref]

Opt. Express (2)

Proc. IEEE (4)

I. Goldstein, P. A. Miles, and A. Chabot, “Heterodyne measurements of light propagation through atmospheric turbulence,” Proc. IEEE 53, 1172–1180 (1965).
[Crossref]

D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967).
[Crossref]

R. T. Menzies and R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[Crossref]

R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
[Crossref]

Other (7)

X. Chu and G. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds., (CRC Press, 2005), pp. 179–432.

“COH28 dual-polarization 90° optical hybrid,” http://kylia.com/?portfolio=90-hybrid-coh , 2015.

“WINDCUBE V2, a 200  m vertical wind Doppler lidar,” http://www.leosphere.com/products/vertical-profiling/windcube-v2 , 2015.

“ZephIR 300 technical specifications,” http://www.zephirlidar.com/resources/technical-specs , 2015.

“Halo photonics pulsed Doppler LiDAR,” http://halo-photonics.com , 2015.

U.S. Standard Atmosphere (U.S. Government Printing Office, 1976).

M. H. Hayes, Statistical Digital Signal Processing and Modeling (Wiley, 1996), pp. 391–424.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simplified illustration of a pulsed CDL. The transmitted, s ( t ) , and the local oscillator, L o ( t ) , signals are spatially and temporary coherent. They are usually (but not necessarily) derived from a single laser known as master oscillator. BS refers to a beam splitter.

Fig. 2.
Fig. 2.

Simple single polarization optical circulator. Isolation between port 1 and 2 is provided by manipulating the light polarization through the polarizing beam splitter (PBS), half-wave plate (HWP), and Faraday rotator, as shown. The fiber coupled ports (FCP) connect the optical circulator to the transmit and receiver fibers. For more information on optical circulators, please see [29,30].

Fig. 3.
Fig. 3.

Single-polarization heterodyne pulsed CDL with IF sampling. The AOM is responsible for chopping the signal received from the MO and generating the required optical pulses while shifting the transmit signal frequency to an IF offset. The balanced mixer and detector utilized the full power of the collected backscatter signal while removing the DC and any common mode components from the L O and r ( t ) signals [17].

Fig. 4.
Fig. 4.

Single polarization image-reject homodyne pulsed CDL. In this system, the pulse generator can be an EOM, which does not introduce any frequency offset in the transmit signal. The image-reject homodyne receiver translates the Doppler signal into baseband for further processing. The image-reject homodyne receiver, also known as direct-conversion receiver, eliminates the need for an IF offset (enabling the detection of Doppler signal sign).

Fig. 5.
Fig. 5.

Reconfigurable polarization-diversity image-reject homodyne pulsed CDL presented in this paper. The dual-polarization 90° optical hybrid [19] is responsible for splitting the receive signal into its orthogonal polarization components while providing the necessary phase shifts for the translation of the Doppler signals into baseband.

Fig. 6.
Fig. 6.

Effective telescope area and expected return signal power associated with one channel for the parameters in Table 1. (a) The effective telescope area. (b) The Mie backscatter signal power.

Fig. 7.
Fig. 7.

Mean square error (MSE) of the mean wind speed estimator versus range. Single channel represents the MSE for one polarization state. Dual channel represents the MSE when the data from both polarization channels is utilized (combined). The values are estimated for two different integration times, i.e., 0.1 and 0.05 s. The upper 6 dB limit corresponds to a mean radial wind speed estimation error (standard deviation) of 0.5 m / s .

Fig. 8.
Fig. 8.

MSE of the mean wind speed estimator versus SNR. Single channel represents the MSE for one polarization state. Dual channel represents the MSE when the data from both polarization channels is utilized (combined). The values are estimated for two different integration times, i.e., 0.1 and 0.05 s. An upper limit of 6 dB corresponds to an estimation error (standard deviation) of 0.5 m / s .

Fig. 9.
Fig. 9.

MSE of the mean wind speed estimator associated with operation Mode I. The simulations have been done following the relevant parameters given in Table 1. A 0.05 s integration time and signal depolarization of 30% have been selected in this simulation. (a) MSE versus range. (b) MSE versus SNR.

Tables (1)

Tables Icon

Table 1. System Simulation Parameters

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E r = η E t β ( λ , z ) T 2 ( λ , z ) G ( z ) A z 2 Δ z ,
E r = η E t β ( λ , z ) T 2 ( λ , z ) A eff ( z ) z 2 c τ 2 ,
p r = η E t β ( λ , z ) T 2 ( λ , z ) c A eff ( z ) 2 z 2 ,
A eff ( z ) = π D 2 4 [ 1 + ( π D 2 4 λ z ) 2 ( 1 z F ) 2 ] 1 ,
A eff ( z ) = π D 2 4 [ 1 + ( π D 2 4 λ z ) 2 ] 1 .
A eff ( z ) = π D 2 4 [ 1 + ( π D 2 4 λ z ) 2 ( 1 z F ) 2 + D 2 2 ρ 0 2 ] 1 ,
ρ 0 = [ 1.45 ( 2 π λ ) 2 0 z C n 2 ( z ) ( 1 z z ) 5 3 d z ] 3 5 ,
ρ 0 = [ 4.35 8 ( 2 π λ ) 2 C n 2 z ] 3 5 .
p i = E { | i ( t ) | 2 } = 2 p l o p r cos 2 ( θ ) ,
p η s n = 2 h c λ p l o B ,
γ ¯ = E { γ } = p i p η s n = p r λ h c B .
p γ ( γ ) = 1 γ ¯ exp ( 1 γ ¯ γ ) ,
i ( t ) = k 0 + s ( t t ) l = 1 N α l δ ( t t l ) d t ,
i ( t ) = s ( t ) h ( t ) ,
i ( t ) = k 0 s ( t t ) exp [ j 2 π f ( t t ) ] × l = 1 N α l δ ( t t l ) δ ( f f l ) d t d f ,
i T ( t ) = w ( t t 0 ) i ( t ) .
P i T ( f ) = E { | I T ( f ) | 2 } = k 2 l = 1 N 0 E { | α l | 2 } [ | W ( f ) | 2 | G ( f ) | 2 E { P T 0 ( f ) } ] ,
P T 0 ( f ) = l = 1 N 0 δ ( f f l )

Metrics