Abstract

We develop a new ray mapping approach to address the surface error and hot spot issues in designing a freeform total internal reflection (TIR) lens for nonrotational uniform illumination. Our proposed ray mapping approach partitions the source intensity distribution in the peripheral regions using the traditional spherical coordinate system to design the freeform TIR surfaces and in the central regions using the modified spherical coordinate system to design the freeform refractive surface. This new design method will reduce the surface error in the current ray mapping methods, therefore improving the illumination uniformity significantly. In addition, the freeform lens designed with this approach is much more robust than the lenses designed using other ray mapping methods.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring freeform illumination optics in a double-pole coordinate system

Donglin Ma, Zexin Feng, and Rongguang Liang
Appl. Opt. 54(9) 2395-2399 (2015)

Multi-element direct design using a freeform surface for a compact illumination system

Zhenfeng Zhuang, Phil Surman, and Simon Thibault
Appl. Opt. 56(32) 9090-9097 (2017)

Catadioptric freeform optical system design for LED off-axis road illumination applications

Zhengbo Zhu, Donglin Ma, Qiaomu Hu, Yongqian Tang, and Rongguang Liang
Opt. Express 26(2) A54-A65 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription