Abstract

We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400–8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35S520 (777.2 nm) and P0,1,23S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy

Kai Sun, Shengkai Wang, Ritobrata Sur, Xing Chao, Jay B. Jeffries, and Ronald K. Hanson
Opt. Express 22(8) 9291-9300 (2014)

Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6µm

Kai Sun, Shengkai Wang, Ritobrata Sur, Xing Chao, Jay B. Jeffries, and Ronald K. Hanson
Opt. Express 22(20) 24559-24565 (2014)

Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube

Shengkai Wang, Kai Sun, David F. Davidson, Jay B. Jeffries, and Ronald K. Hanson
Opt. Express 24(1) 308-318 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).
  2. D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271–283 (2009).
    [Crossref]
  3. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
    [Crossref]
  4. H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of atomic oxygen for hypersonic flowfield measurements,” in 31st Aerospaces Sciences Meeting, Reno, Nevada, 1993.
  5. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [Crossref]
  6. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [Crossref]
  7. M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
    [Crossref]
  8. J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley, 2009), pp. 27–56.
  9. B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109, 581–591 (2012).
    [Crossref]
  10. K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy,” Opt. Express 22, 9291–9300 (2014).
    [Crossref]
  11. K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6  μm,” Opt. Express 22, 24559–24565 (2014).
    [Crossref]
  12. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
    [Crossref]
  13. E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
    [Crossref]
  14. G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57  μm: New sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45, 9221–9229 (2006).
    [Crossref]
  15. K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of the dissociation rate coefficient for oxygen in argon with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 30 May 2014).
  16. Y. Ralchenko, A. E. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (ver. 4.1.0),” http://physics.nist.gov/asd3 (Accessed 08/24/11).
  17. K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of vibrational relaxation times for oxygen with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 18 May 2014).
  18. Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
    [Crossref]
  19. M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.
  20. G. Colonna and M. Capitelli, “A few level approach for the electronic partition function of atomic systems,” Spectrochim. Acta Part B 64, 863–873 (2009).
    [Crossref]
  21. H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of kinetic and population temperatures in high-enthalpy flows,” in Shock Waves @ Marseille II (Springer, 1995), pp. 33–36.
  22. M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
    [Crossref]
  23. C. O. Johnston, B. R. Hollis, and K. Sutton, “Non-Boltzmann modeling for air shock-layer radiation at lunar-return conditions,” J. Spacecr. Rockets 45, 879–890 (2008).
    [Crossref]
  24. C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482  nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013).
    [Crossref]
  25. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
    [Crossref]

2014 (2)

2013 (1)

C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482  nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013).
[Crossref]

2012 (1)

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109, 581–591 (2012).
[Crossref]

2011 (1)

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[Crossref]

2009 (4)

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271–283 (2009).
[Crossref]

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

G. Colonna and M. Capitelli, “A few level approach for the electronic partition function of atomic systems,” Spectrochim. Acta Part B 64, 863–873 (2009).
[Crossref]

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

2008 (2)

C. O. Johnston, B. R. Hollis, and K. Sutton, “Non-Boltzmann modeling for air shock-layer radiation at lunar-return conditions,” J. Spacecr. Rockets 45, 879–890 (2008).
[Crossref]

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

2006 (1)

2005 (1)

M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
[Crossref]

2001 (1)

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

1998 (2)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[Crossref]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Allen, N. T.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Anderson, J. G.

Baer, D. S.

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of atomic oxygen for hypersonic flowfield measurements,” in 31st Aerospaces Sciences Meeting, Reno, Nevada, 1993.

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of kinetic and population temperatures in high-enthalpy flows,” in Shock Waves @ Marseille II (Springer, 1995), pp. 33–36.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[Crossref]

Bourdon, A.

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

Bultel, A.

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

Capitelli, M.

G. Colonna and M. Capitelli, “A few level approach for the electronic partition function of atomic systems,” Spectrochim. Acta Part B 64, 863–873 (2009).
[Crossref]

Carleer, M.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Chang, H. A.

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of kinetic and population temperatures in high-enthalpy flows,” in Shock Waves @ Marseille II (Springer, 1995), pp. 33–36.

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of atomic oxygen for hypersonic flowfield measurements,” in 31st Aerospaces Sciences Meeting, Reno, Nevada, 1993.

Chang, L. S.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

Chao, X.

Chazot, O.

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

Clair, J. M.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Colins, R.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Colonna, G.

G. Colonna and M. Capitelli, “A few level approach for the electronic partition function of atomic systems,” Spectrochim. Acta Part B 64, 863–873 (2009).
[Crossref]

Coquart, B.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Davidson, D. F.

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271–283 (2009).
[Crossref]

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of the dissociation rate coefficient for oxygen in argon with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 30 May 2014).

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of vibrational relaxation times for oxygen with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 18 May 2014).

Drisdell, W. S.

Driver, D. M.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

Engel, D. G.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Engel, G. S.

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[Crossref]

Fally, S.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Gaydon, A. G.

A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).

Goldenstein, C. S.

C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482  nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013).
[Crossref]

Hanson, R. K.

K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy,” Opt. Express 22, 9291–9300 (2014).
[Crossref]

K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6  μm,” Opt. Express 22, 24559–24565 (2014).
[Crossref]

C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482  nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013).
[Crossref]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[Crossref]

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271–283 (2009).
[Crossref]

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of the dissociation rate coefficient for oxygen in argon with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 30 May 2014).

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of vibrational relaxation times for oxygen with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 18 May 2014).

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of atomic oxygen for hypersonic flowfield measurements,” in 31st Aerospaces Sciences Meeting, Reno, Nevada, 1993.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of kinetic and population temperatures in high-enthalpy flows,” in Shock Waves @ Marseille II (Springer, 1995), pp. 33–36.

Hermans, C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Hollis, B. R.

C. O. Johnston, B. R. Hollis, and K. Sutton, “Non-Boltzmann modeling for air shock-layer radiation at lunar-return conditions,” J. Spacecr. Rockets 45, 879–890 (2008).
[Crossref]

Hong, Z.

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

Hurle, I. R.

A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).

Jeffries, J. B.

K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6  μm,” Opt. Express 22, 24559–24565 (2014).
[Crossref]

K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, “Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy,” Opt. Express 22, 9291–9300 (2014).
[Crossref]

C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482  nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013).
[Crossref]

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

Jenouvrier, A.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Johnston, C. O.

C. O. Johnston, B. R. Hollis, and K. Sutton, “Non-Boltzmann modeling for air shock-layer radiation at lunar-return conditions,” J. Spacecr. Rockets 45, 879–890 (2008).
[Crossref]

Jones, R. L.

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109, 581–591 (2012).
[Crossref]

Keutsch, F. N.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57  μm: New sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45, 9221–9229 (2006).
[Crossref]

Kroll, J. H.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Lapson, L.

Magin, T.

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

Martin, M. N.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

Mazurenka, M.

M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
[Crossref]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[Crossref]

Mérienne, M. F.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Moyer, E. J.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57  μm: New sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45, 9221–9229 (2006).
[Crossref]

Nawaz, A.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

Orr-Ewing, A. J.

M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
[Crossref]

Ouyang, B.

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109, 581–591 (2012).
[Crossref]

Owen, K.

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of the dissociation rate coefficient for oxygen in argon with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 30 May 2014).

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of vibrational relaxation times for oxygen with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 18 May 2014).

Panesi, M.

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

Pang, G. A.

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

Paul, J. B.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[Crossref]

Peverall, R.

J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley, 2009), pp. 27–56.

Peverall, R. R.

M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
[Crossref]

Raiche, G.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

Ritchie, G. A. D.

M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
[Crossref]

J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley, 2009), pp. 27–56.

Sayres, D. S.

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Simon, P. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Sun, K.

Sur, R.

Sutton, K.

C. O. Johnston, B. R. Hollis, and K. Sutton, “Non-Boltzmann modeling for air shock-layer radiation at lunar-return conditions,” J. Spacecr. Rockets 45, 879–890 (2008).
[Crossref]

Taunk, J. S.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

van Helden, J. H.

J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley, 2009), pp. 27–56.

Vandaele, A. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

Vasu, S. S.

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

Wang, S.

Annu. Rep. Prog. Chem. Sect. C (1)

M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100–142 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

E. J. Moyer, D. S. Sayres, D. G. Engel, J. M. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

B. Ouyang and R. L. Jones, “Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression,” Appl. Phys. B 109, 581–591 (2012).
[Crossref]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482  nm,” J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013).
[Crossref]

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Colins, S. Fally, M. F. Mérienne, A. Jenouvrier, and B. Coquart, “Measurements of the NO2 absorption cross-sections from 42000  cm−1 to 10000  cm−1 (238–1000  nm) at 220  K and 294  K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[Crossref]

J. Spacecr. Rockets (1)

C. O. Johnston, B. R. Hollis, and K. Sutton, “Non-Boltzmann modeling for air shock-layer radiation at lunar-return conditions,” J. Spacecr. Rockets 45, 879–890 (2008).
[Crossref]

J. Thermophys. Heat Transfer (1)

M. Panesi, T. Magin, A. Bourdon, A. Bultel, and O. Chazot, “Fire II flight experiment analysis by means of a collisional-radiative model,” J. Thermophys. Heat Transfer 23, 236–248 (2009).
[Crossref]

Opt. Express (2)

Proc. Combust. Inst. (1)

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity-enhanced absorption and cavity-enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[Crossref]

Shock Waves (2)

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271–283 (2009).
[Crossref]

Z. Hong, G. A. Pang, S. S. Vasu, D. F. Davidson, and R. K. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113–123 (2009).
[Crossref]

Spectrochim. Acta Part B (1)

G. Colonna and M. Capitelli, “A few level approach for the electronic partition function of atomic systems,” Spectrochim. Acta Part B 64, 863–873 (2009).
[Crossref]

Other (8)

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of kinetic and population temperatures in high-enthalpy flows,” in Shock Waves @ Marseille II (Springer, 1995), pp. 33–36.

M. N. Martin, L. S. Chang, J. B. Jeffries, R. K. Hanson, A. Nawaz, J. S. Taunk, D. M. Driver, and G. Raiche, “Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy,” in 44th Plasmadynamics and Lasers Conference (AIAA, 2013), pp. 2013–2761.

A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963).

H. A. Chang, D. S. Baer, and R. K. Hanson, “Semiconductor laser diagnostics of atomic oxygen for hypersonic flowfield measurements,” in 31st Aerospaces Sciences Meeting, Reno, Nevada, 1993.

J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy: Techniques and Applications, G. Berden and R. Engeln, eds. (Wiley, 2009), pp. 27–56.

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of the dissociation rate coefficient for oxygen in argon with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 30 May 2014).

Y. Ralchenko, A. E. Kramida, and J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (ver. 4.1.0),” http://physics.nist.gov/asd3 (Accessed 08/24/11).

K. Owen, D. F. Davidson, and R. K. Hanson, “Measurements of vibrational relaxation times for oxygen with laser absorption spectroscopy in a shock tube,” J. Thermophys. Heat Transfer (submitted, 18 May 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Integrated absorbance from the isolated electronic transition near 777.2 nm (top panel) and from the three neighboring electronic transitions near 844.6 nm (bottom panel). Note that for the blended transitions near 844.6 nm, the total absorbance (dashed curve) is directly obtained from the superposition of all three lines.

Fig. 2.
Fig. 2.

Wavelength-dependent reflectivity curve of the CEAS mirrors taken from manufacturer (Rocky Mountain Inc., USA).

Fig. 3.
Fig. 3.

Schematic of the experimental setup used in this study. The optical cavity was located 2 cm from the shock tube end-wall.

Fig. 4.
Fig. 4.

Measured transmitted laser intensity for a single scan cycle. Panel (a) shows the transition near 777.2 nm ( T tr = 6460 K , P = 0.64 atm , X O = 1.980 % ) and panel (b) shows the transitions near 844.6 nm ( T tr = 7186 K , P = 0.62 atm , X O = 1.975 % ).

Fig. 5.
Fig. 5.

Measured CEAS absorbance profiles (top) converted to single-pass absorbances (bottom) for transitions near (a) 777.2 nm ( T tr = 6460 K , P = 0.64 atm , X O = 1.980 % ) and (b) 844.6 nm ( T tr = 7186 K , P = 0.62 atm , X O = 1.975 % ). Residuals from Voigt-fitting the measured data are also shown.

Fig. 6.
Fig. 6.

Off-axis CEAS measurements of O * (777.2 nm) versus time for initial test gas mixture of 1% O 2 / Ar . The solid curve shows the measured pressure by the Kistler probe; note the two sharp pressure rises due to passage of incident and reflected shocks. The dashed curve corresponds to simulated ground-state atomic oxygen concentration using the O 2 decomposition rate from Owen et al. [15] and the circles represent the measured excited-state population using CEAS. Here, concentration time-histories of O and O * were normalized by the average steady-state concentration of each species following dissociation and excitation chemistry.

Fig. 7.
Fig. 7.

Steady-state population fractions of the lower energy state for transitions at (a) 777.2 nm and (b) 844.6 nm. CEAS improved sensitivity over single-pass experiments and enabled measurements at lower temperatures where the effects of ionization and radiation cooling are small.

Fig. 8.
Fig. 8.

Measured translational temperature (from Gaussian component of the Voigt lineshape for the 777.2 nm transition) and calculated values at long times, after dissociation chemistry is complete.

Fig. 9.
Fig. 9.

Measured collisional-broadening coefficient (from Lorentzian component of the Voigt lineshape for the 777.2 nm transition). For the best-fit, n = 0.6985 , T ref = 298 K , and 2 γ O - Ar ( T ref ) = 0.4615 cm 1 / atm .

Fig. 10.
Fig. 10.

Left panel (a) Schematic of the experimental setup illustrating the two-static-cell method used to determine the CEAS gain factor. Laser beams from both DFB lasers were aligned across a multipass cell and a CEAS cell with different effective path lengths. Both cells were filled with the same gas mixture of 2% NO 2 / Ar at P = 1.84 atm and T = 297.5 K . Right panel (b) Single-sweep raw scan data showing measured transmitted signals across the multipass (bottom) and CEAS (top) cells with ( I t ) and without ( I o ) absorbing gas. Data averaging of 100 successive scans helped improve overall signal-to-noise, especially for the CEAS scheme.

Fig. 11.
Fig. 11.

Top panel: Measured NO 2 absorbance near (a) 777.2 nm and (b) 844.6 nm for both the multipass and CEAS static cells. Both cells were filled with identical mixtures of 2% NO 2 / Ar at P = 1.84 atm and T = 297.5 K . Bottom Panel: Measured CEAS gain factors near (a) 777.2 nm and (b) 844.6 nm. Gain factors were found to be constant across the frequency range of the laser scan with an average value of 104 (777.2 nm) and 142 (844.6 nm). The standard deviation between average and measured values of G were approximately 1.4% for both transitions.

Tables (1)

Tables Icon

Table 1. Fundamental Spectroscopic Parameters for the Electronic Transitions Measured in this Study

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( I t I 0 ) ν = exp ( α ν ) ,
A int = transition α ν d ν = S l u n l L .
a ln 2 Δ ν C Δ ν D ,
Δ ν D = ν o ( 8 k B T tr ln 2 m c 2 ) 1 / 2 ,
Δ ν C = P A X A 2 γ B A ,
α CEAS ( ν ) = ln ( I t I 0 ) = ln ( 1 + G α SP ( ν ) ) ,
n l n O = g l Q O exp ( E l k B T ) ,
G = exp ( α CEAS ( ν ) ) 1 α SP ( ν ) ,
α SP ( ν ) = α MP ( ν ) ( L L MP ) ,

Metrics