N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express Rev. 6, 3826–3841 (2015).

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949, 894911 (2014).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113, 263901 (2014).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19, 23298–23314 (2011).

[Crossref]

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Lasers Eng. 48, 779–785 (2010).

[Crossref]

C. Preza and V. Myneni, “Quantitative depth-variant imaging for fluorescence microscopy using the COSMOS software package,” Proc. SPIE 7570, 757003 (2010).

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).

[Crossref]

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

C. Preza and J. A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21, 1593–1601 (2004).

[Crossref]

J. Stockley and S. Serati, “Cascaded one-dimensional liquid crystal OPAs for 2-D beam steering,” Proc. IEEE 4, 1817–1822 (2003).

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[Crossref]

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9, 54–66 (1992).

I. Csiszár, “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems,” Ann. Statist. 19, 2032–2066 (1991).

[Crossref]

M. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P. Török and F.-J. Kao, eds. (Springer, 2003), pp. 143–165.

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Lasers Eng. 48, 779–785 (2010).

[Crossref]

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Lasers Eng. 48, 779–785 (2010).

[Crossref]

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Lasers Eng. 48, 779–785 (2010).

[Crossref]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113, 263901 (2014).

M. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P. Török and F.-J. Kao, eds. (Springer, 2003), pp. 143–165.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[Crossref]

I. Csiszár, “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems,” Ann. Statist. 19, 2032–2066 (1991).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949, 894911 (2014).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20, 22334 (2012).

[Crossref]

D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Biomedical Optics and 3D Imaging (2012), paper DSu2C.3.

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martnez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17, 13810–13818 (2009).

[Crossref]

I. Escobar, E. Sánchez-Ortiga, G. Saavedra, and M. Martínez-Corral, “New analytical tools for evaluation of spherical aberration in optical microscopy,” in Optical Fluorescence Microscopy (Springer, 2011), pp. 85–100.

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9, 54–66 (1992).

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20, 22334 (2012).

[Crossref]

D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Biomedical Optics and 3D Imaging (2012), paper DSu2C.3.

M. Hossain, S. V. King, and C. Preza, “Enhanced extended depth-of-field microscopy via modeling of SLM effects on the applied phase mask,” in Imaging and Applied Optics, OSA Technical Digest (2014), paper IW4C.4.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).

[Crossref]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[Crossref]

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949, 894911 (2014).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

M. Hossain, S. V. King, and C. Preza, “Enhanced extended depth-of-field microscopy via modeling of SLM effects on the applied phase mask,” in Imaging and Applied Optics, OSA Technical Digest (2014), paper IW4C.4.

S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9, 54–66 (1992).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

I. Escobar, E. Sánchez-Ortiga, G. Saavedra, and M. Martínez-Corral, “New analytical tools for evaluation of spherical aberration in optical microscopy,” in Optical Fluorescence Microscopy (Springer, 2011), pp. 85–100.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

C. Preza and V. Myneni, “Quantitative depth-variant imaging for fluorescence microscopy using the COSMOS software package,” Proc. SPIE 7570, 757003 (2010).

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express Rev. 6, 3826–3841 (2015).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949, 894911 (2014).

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20, 22334 (2012).

[Crossref]

D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Biomedical Optics and 3D Imaging (2012), paper DSu2C.3.

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express Rev. 6, 3826–3841 (2015).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949, 894911 (2014).

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19, 23298–23314 (2011).

[Crossref]

C. Preza and V. Myneni, “Quantitative depth-variant imaging for fluorescence microscopy using the COSMOS software package,” Proc. SPIE 7570, 757003 (2010).

C. Preza and J. A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21, 1593–1601 (2004).

[Crossref]

M. Hossain, S. V. King, and C. Preza, “Enhanced extended depth-of-field microscopy via modeling of SLM effects on the applied phase mask,” in Imaging and Applied Optics, OSA Technical Digest (2014), paper IW4C.4.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martnez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17, 13810–13818 (2009).

[Crossref]

I. Escobar, E. Sánchez-Ortiga, G. Saavedra, and M. Martínez-Corral, “New analytical tools for evaluation of spherical aberration in optical microscopy,” in Optical Fluorescence Microscopy (Springer, 2011), pp. 85–100.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martnez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17, 13810–13818 (2009).

[Crossref]

I. Escobar, E. Sánchez-Ortiga, G. Saavedra, and M. Martínez-Corral, “New analytical tools for evaluation of spherical aberration in optical microscopy,” in Optical Fluorescence Microscopy (Springer, 2011), pp. 85–100.

J. Stockley and S. Serati, “Cascaded one-dimensional liquid crystal OPAs for 2-D beam steering,” Proc. IEEE 4, 1817–1822 (2003).

M. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P. Török and F.-J. Kao, eds. (Springer, 2003), pp. 143–165.

J. Stockley and S. Serati, “Cascaded one-dimensional liquid crystal OPAs for 2-D beam steering,” Proc. IEEE 4, 1817–1822 (2003).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

M. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P. Török and F.-J. Kao, eds. (Springer, 2003), pp. 143–165.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113, 263901 (2014).

S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113, 263901 (2014).

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113, 263901 (2014).

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).

[Crossref]

I. Csiszár, “Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems,” Ann. Statist. 19, 2032–2066 (1991).

[Crossref]

S. Quirin and R. Piestun, “Depth estimation and image recovery using broadband, incoherent illumination with engineered point spread functions,” Appl. Opt. 52, A367–A376 (2013).

[Crossref]

E. Dowski and W. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).

[Crossref]

W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002).

[Crossref]

N. Patwary and C. Preza, “Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions,” Biomed. Opt. Express Rev. 6, 3826–3841 (2015).

S. Prasad, T. Torgersen, V. Pauca, R. Plemmons, and J. van der Gracht, “High-resolution imaging using integrated optical systems,” Int. J. Imaging Syst. Technol. 14, 67–74 (2004).

[Crossref]

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999).

[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic three-dimensional super-resolution imaging with a self-bending point spread function,” Nat. Photonics 8, 302–306 (2014).

[Crossref]

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21, 16007–16021 (2013).

[Crossref]

M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650–2656 (2006).

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).

[Crossref]

S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluorescent microparticles using a photon-limited double helix response system,” Opt. Express 16, 22048–22057 (2008).

[Crossref]

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martnez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express 17, 13810–13818 (2009).

[Crossref]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).

[Crossref]

S. Yuan and C. Preza, “Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging,” Opt. Express 19, 23298–23314 (2011).

[Crossref]

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20, 22334 (2012).

[Crossref]

G. Carles, A. Carnicer, and S. Bosch, “Phase mask selection in wavefront coding systems: A design approach,” Opt. Lasers Eng. 48, 779–785 (2010).

[Crossref]

X. Xie, Y. Chen, K. Yang, and J. Zhou, “Harnessing the point-spread function for high-resolution far-field optical microscopy,” Phys. Rev. Lett. 113, 263901 (2014).

J. Stockley and S. Serati, “Cascaded one-dimensional liquid crystal OPAs for 2-D beam steering,” Proc. IEEE 4, 1817–1822 (2003).

N. Patwary, A. Doblas, S. V. King, and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949, 894911 (2014).

A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949, 894914 (2014).

C. Preza and V. Myneni, “Quantitative depth-variant imaging for fluorescence microscopy using the COSMOS software package,” Proc. SPIE 7570, 757003 (2010).

S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martinez-Corral, and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM,” Proc. SPIE 8949, 894913 (2014).

I. Escobar, E. Sánchez-Ortiga, G. Saavedra, and M. Martínez-Corral, “New analytical tools for evaluation of spherical aberration in optical microscopy,” in Optical Fluorescence Microscopy (Springer, 2011), pp. 85–100.

M. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluorescence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P. Török and F.-J. Kao, eds. (Springer, 2003), pp. 143–165.

C. Preza, “Computational Optical Sectioning Microscopy Open Source (COSMOS) Software package,” Computational Imaging Research Laboratory (CIRL), 2014, http://cirl.memphis.edu/cosmos.php.

D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Biomedical Optics and 3D Imaging (2012), paper DSu2C.3.

M. Hossain, S. V. King, and C. Preza, “Enhanced extended depth-of-field microscopy via modeling of SLM effects on the applied phase mask,” in Imaging and Applied Optics, OSA Technical Digest (2014), paper IW4C.4.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

S. T. Wu and D. K. Yang, Fundamentals of Liquid Crystal Devices (Wiley, 2006).