Abstract

Nanotechnology presents versatile architectural designs for the purpose of utilization as a building block of 1D optoelectronic nanodevices because current nanowire-based schemes require more effective solutions for low absorption capacity of nanoscale volumes. We report on the potential of nanospring absorbers as an alternative light-harvesting platform with significant advantages over conventional nanowires. Absorption capacity of nanospring geometry is found to be superior to cylindrical nanowire shape. Unlike nanowires, they are able to trap a larger amount of light thanks to characteristic periodic behavior that boosts light collection for the points matched with Mie resonances. Moreover, nanospring shape supplies compactness to a resulting device with area preservation as high as twofold. By considering that a nanospring array with optimal periods yields higher absorption than individual arrangements and core-shell designs, which further promote light collection due to unique antireflection features of shell layer, these nanostructures will pave the way for the development of highly efficient self-powered nanosystems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Harvesting light at the nanoscale by GaAs-gold nanowire arrays

Stéphane Collin, Fabrice Pardo, Nathalie Bardou, Aristide Lemaître, Stanislav Averin, and Jean-Luc Pelouard
Opt. Express 19(18) 17293-17297 (2011)

Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity

Feng Gai, Cheng Zhang, Yaohui Zhan, and Xiaofeng Li
Opt. Express 24(26) A1505-A1513 (2016)

Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

R. Paniagua-Domínguez, D. R. Abujetas, L. S. Froufe-Pérez, J. J. Sáenz, and J. A. Sánchez-Gil
Opt. Express 21(19) 22076-22089 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription