Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography

Not Accessible

Your library or personal account may give you access

Abstract

Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed “temperature-modulated fluorescence tomography” (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40mm×W:100mm) is recovered as an elongated object in the conventional FT (x=4.5mm; y=10.4mm), while TM-FT recovers it successfully in both directions (x=3.8mm; y=4.6mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Experimental evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography

Tiffany C. Kwong, Farouk Nouizi, Yuting Lin, Jaedu Cho, Yue Zhu, Uma Sampathkumaran, and Gultekin Gulsen
Appl. Opt. 56(3) 521-529 (2017)

Fast ICCD-based temperature modulated fluorescence tomography

Farouk Nouizi, Tiffany C. Kwong, Bryan Turong, Deniz Nikkhah, Uma Sampathkumaran, and Gultekin Gulsen
Appl. Opt. 62(28) 7420-7430 (2023)

Feasibility study of high spatial resolution multimodality fluorescence tomography in ex vivo biological tissue

Tiffany C. Kwong, Farouk Nouizi, Jaedu Cho, Yuting Lin, Uma Sampathkumaran, and Gultekin Gulsen
Appl. Opt. 56(28) 7886-7891 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.