Abstract

A method for determining the spatially resolved acoustic field inside a water-filled microchannel is presented. The acoustic field, both amplitude and phase, is determined by measuring the change of the index of refraction of the water due to local pressure using stroboscopic illumination. Pressure distributions are measured for the fundamental pressure resonance in the water and two higher harmonic modes. By combining measurement at a range of excitation frequencies, a frequency map of modes is made, from which the spectral line width and Q-factor of individual resonances can be obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mass-manufacturable polymer microfluidic device for dual fiber optical trapping

Diane De Coster, Heidi Ottevaere, Michael Vervaeke, Jürgen Van Erps, Manly Callewaert, Pieter Wuytens, Stephen H. Simpson, Simon Hanna, Wim De Malsche, and Hugo Thienpont
Opt. Express 23(24) 30991-31009 (2015)

Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel

Valeria Maselli, Jason R. Grenier, Stephen Ho, and Peter R. Herman
Opt. Express 17(14) 11719-11729 (2009)

Miniaturized high-NA focusing-mirror multiple optical tweezers

Fabrice Merenda, Johann Rohner, Jean-Marc Fournier, and René-Paul Salathé
Opt. Express 15(10) 6075-6086 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
    [Crossref]
  2. D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
    [Crossref]
  3. A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).
  4. C. Wyatt Shields, C. Reyes, and G. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15, 1230–1249 (2015).
    [Crossref]
  5. J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
    [Crossref]
  6. H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
    [Crossref]
  7. E. Delamarche, D. Juncker, and H. Schmid, “Microfluidics for processing surfaces and miniaturizing biological assays,” Adv. Mater. 17, 2911–2933 (2005).
    [Crossref]
  8. C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).
  9. X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
    [Crossref]
  10. Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves,” Lab Chip 11, 1280–1285 (2011).
    [Crossref]
  11. J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).
  12. Y. Chen and S. Lee, “Manipulation of biological objects using acoustic bubbles: a review,” Integr. Comp. Biol. 54, 959–968 (2014).
  13. T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
    [Crossref]
  14. K. Yasuda, S.-I. Umemura, and K. Takeda, “Concentration and fractionation of small particles in liquid by ultrasound,” Jpn. J. Appl. Phys. 34, 2715 (1995).
  15. J. J. Hawkes and W. T. Coakley, “A continuous flow ultrasonic cell-filtering method,” Enzyme Microb. Technol. 19, 57–62 (1996).
  16. J. J. Hawkes and W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flow,” Sens. Actuators B 75, 213–222 (2001).
  17. H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
    [Crossref]
  18. J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
    [Crossref]
  19. N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).
  20. M. Bengtsson and T. Laurell, “Ultrasonic agitation in microchannels,” Anal. Bioanal. Chem. 378, 1716–1721 (2004).
    [Crossref]
  21. J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
    [Crossref]
  22. O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
    [Crossref]
  23. M. Hill and R. J. K. Wood, “Modelling in the design of a flow-through ultrasonic separator,” Ultrasonics 38, 662–665 (2000).
    [Crossref]
  24. M. Hill, “The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators,” J. Acoust. Soc. Am. 114, 2654–2661 (2003).
    [Crossref]
  25. R. Barnkob and H. Bruus, “Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices,” Proc. Meet. Acoust. 6, 020001 (2009).
  26. H. Bruus, “Acoustofluidics 2: perturbation theory and ultrasound resonance modes,” Lab Chip 12, 20–28 (2012).
    [Crossref]
  27. A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
    [Crossref]
  28. P. Hahn, O. Schwab, and J. Dual, “Modeling and optimization of acoustofluidic micro-devices,” Lab Chip 14, 3937–3948 (2014).
    [Crossref]
  29. S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
    [Crossref]
  30. R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
    [Crossref]
  31. O. Dron and J.-L. Aider, “Acoustic energy measurement for a standing acoustic wave in a micro-channel,” Europhys. Lett. 97, 44011 (2012).
  32. S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
    [Crossref]
  33. B. J. Hoenders, “The painful derivation of the refractive index from microscopical considerations,” in Proceedings of Light-Activated Tissue Regeneration and Therapy Conference, R. Waynant and D. B. Tata, eds., Vol. 12 in Lecture Notes in Electrical Engineering (Springer, 2008), pp. 297–305.
  34. M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).
  35. D. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. 6, 223–238 (1970).
    [Crossref]
  36. C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
    [Crossref]
  37. L. E. Kinsler, Fundamentals of Acoustics, 4th ed. (Wiley, 2000).
  38. “CRC Handbook of Chemistry and Physics, 92nd ed., 2011–2012,” J. Am. Chem. Soc.133, 13766 (2011).
  39. A. H. Harvey, J. S. Gallagher, and J. S. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–767 (1998).
    [Crossref]
  40. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
    [Crossref]
  41. R. T. Beyer, “Parameter of nonlinearity in fluids,” J. Acoust. Soc. Am. 32, 719–721 (1960).
    [Crossref]
  42. T. Pitts, A. Sagers, and J. Greenleaf, “Optical phase contrast measurement of ultrasonic fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1686–1694 (2001).
    [Crossref]
  43. I. Shavrin, L. Lipiäinen, K. Kokkonen, S. Novotny, M. Kaivola, and H. Ludvigsen, “Stroboscopic white-light interferometry of vibrating microstructures,” Opt. Express 21, 16901–16907 (2013).
    [Crossref]
  44. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
    [Crossref]
  45. T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
    [Crossref]
  46. O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
    [Crossref]

2015 (3)

C. Wyatt Shields, C. Reyes, and G. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15, 1230–1249 (2015).
[Crossref]

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
[Crossref]

2014 (2)

P. Hahn, O. Schwab, and J. Dual, “Modeling and optimization of acoustofluidic micro-devices,” Lab Chip 14, 3937–3948 (2014).
[Crossref]

Y. Chen and S. Lee, “Manipulation of biological objects using acoustic bubbles: a review,” Integr. Comp. Biol. 54, 959–968 (2014).

2013 (3)

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
[Crossref]

I. Shavrin, L. Lipiäinen, K. Kokkonen, S. Novotny, M. Kaivola, and H. Ludvigsen, “Stroboscopic white-light interferometry of vibrating microstructures,” Opt. Express 21, 16901–16907 (2013).
[Crossref]

2012 (4)

O. Dron and J.-L. Aider, “Acoustic energy measurement for a standing acoustic wave in a micro-channel,” Europhys. Lett. 97, 44011 (2012).

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

H. Bruus, “Acoustofluidics 2: perturbation theory and ultrasound resonance modes,” Lab Chip 12, 20–28 (2012).
[Crossref]

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
[Crossref]

2011 (3)

Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves,” Lab Chip 11, 1280–1285 (2011).
[Crossref]

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
[Crossref]

C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).

2010 (3)

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
[Crossref]

2009 (5)

R. Barnkob and H. Bruus, “Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices,” Proc. Meet. Acoust. 6, 020001 (2009).

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
[Crossref]

O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
[Crossref]

2008 (1)

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

2007 (1)

S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
[Crossref]

2006 (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

2005 (1)

E. Delamarche, D. Juncker, and H. Schmid, “Microfluidics for processing surfaces and miniaturizing biological assays,” Adv. Mater. 17, 2911–2933 (2005).
[Crossref]

2004 (2)

M. Bengtsson and T. Laurell, “Ultrasonic agitation in microchannels,” Anal. Bioanal. Chem. 378, 1716–1721 (2004).
[Crossref]

J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
[Crossref]

2003 (2)

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

M. Hill, “The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators,” J. Acoust. Soc. Am. 114, 2654–2661 (2003).
[Crossref]

2001 (3)

J. J. Hawkes and W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flow,” Sens. Actuators B 75, 213–222 (2001).

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

T. Pitts, A. Sagers, and J. Greenleaf, “Optical phase contrast measurement of ultrasonic fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1686–1694 (2001).
[Crossref]

2000 (2)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

M. Hill and R. J. K. Wood, “Modelling in the design of a flow-through ultrasonic separator,” Ultrasonics 38, 662–665 (2000).
[Crossref]

1998 (1)

A. H. Harvey, J. S. Gallagher, and J. S. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–767 (1998).
[Crossref]

1996 (1)

J. J. Hawkes and W. T. Coakley, “A continuous flow ultrasonic cell-filtering method,” Enzyme Microb. Technol. 19, 57–62 (1996).

1995 (2)

K. Yasuda, S.-I. Umemura, and K. Takeda, “Concentration and fractionation of small particles in liquid by ultrasound,” Jpn. J. Appl. Phys. 34, 2715 (1995).

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
[Crossref]

1993 (1)

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

1970 (1)

D. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. 6, 223–238 (1970).
[Crossref]

1960 (1)

R. T. Beyer, “Parameter of nonlinearity in fluids,” J. Acoust. Soc. Am. 32, 719–721 (1960).
[Crossref]

Aider, J.-L.

O. Dron and J.-L. Aider, “Acoustic energy measurement for a standing acoustic wave in a micro-channel,” Europhys. Lett. 97, 44011 (2012).

Augustsson, P.

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
[Crossref]

Barber, R. W.

J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
[Crossref]

Barnkob, R.

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
[Crossref]

R. Barnkob and H. Bruus, “Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices,” Proc. Meet. Acoust. 6, 020001 (2009).

Bass, J. D.

C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
[Crossref]

Beeby, S.

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

Bengtsson, M.

M. Bengtsson and T. Laurell, “Ultrasonic agitation in microchannels,” Anal. Bioanal. Chem. 378, 1716–1721 (2004).
[Crossref]

Beyer, R. T.

R. T. Beyer, “Parameter of nonlinearity in fluids,” J. Acoust. Soc. Am. 32, 719–721 (1960).
[Crossref]

Bhagat, A.

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Bilaniuk, N.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

Bourquin, Y.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Bow, H.

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Bruus, H.

H. Bruus, “Acoustofluidics 2: perturbation theory and ultrasound resonance modes,” Lab Chip 12, 20–28 (2012).
[Crossref]

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
[Crossref]

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

R. Barnkob and H. Bruus, “Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices,” Proc. Meet. Acoust. 6, 020001 (2009).

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
[Crossref]

Chang, C.-L.

C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).

Chen, Y.

Y. Chen and S. Lee, “Manipulation of biological objects using acoustic bubbles: a review,” Integr. Comp. Biol. 54, 959–968 (2014).

Coakley, W. T.

J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
[Crossref]

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

J. J. Hawkes and W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flow,” Sens. Actuators B 75, 213–222 (2001).

J. J. Hawkes and W. T. Coakley, “A continuous flow ultrasonic cell-filtering method,” Enzyme Microb. Technol. 19, 57–62 (1996).

Cooper, J. M.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Costanzo, F.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Delamarche, E.

E. Delamarche, D. Juncker, and H. Schmid, “Microfluidics for processing surfaces and miniaturizing biological assays,” Adv. Mater. 17, 2911–2933 (2005).
[Crossref]

Ding, X.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Dong, R.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Dron, O.

O. Dron and J.-L. Aider, “Acoustic energy measurement for a standing acoustic wave in a micro-channel,” Europhys. Lett. 97, 44011 (2012).

Dual, J.

S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
[Crossref]

P. Hahn, O. Schwab, and J. Dual, “Modeling and optimization of acoustofluidic micro-devices,” Lab Chip 14, 3937–3948 (2014).
[Crossref]

Duits, M. H. G.

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
[Crossref]

Emerson, D. R.

J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
[Crossref]

Evander, M.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
[Crossref]

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
[Crossref]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Fu, L.-M.

C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. S. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–767 (1998).
[Crossref]

Gao, W.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Garcia-Gradilla, V.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Graham, A.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Greenleaf, J.

T. Pitts, A. Sagers, and J. Greenleaf, “Optical phase contrast measurement of ultrasonic fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1686–1694 (2001).
[Crossref]

Gu, H.

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
[Crossref]

Guillot, B.

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

Guo, F.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Haeberle, S.

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

Hagsäter, S. M.

S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
[Crossref]

Hahn, P.

P. Hahn, O. Schwab, and J. Dual, “Modeling and optimization of acoustofluidic micro-devices,” Lab Chip 14, 3937–3948 (2014).
[Crossref]

Hammarström, B.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
[Crossref]

Han, J.

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Harris, N. R.

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. S. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–767 (1998).
[Crossref]

Hawkes, J. J.

J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
[Crossref]

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

J. J. Hawkes and W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flow,” Sens. Actuators B 75, 213–222 (2001).

J. J. Hawkes and W. T. Coakley, “A continuous flow ultrasonic cell-filtering method,” Enzyme Microb. Technol. 19, 57–62 (1996).

Heitger, F.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
[Crossref]

Hertz, H. M.

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

Hill, M.

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

M. Hill, “The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators,” J. Acoust. Soc. Am. 114, 2654–2661 (2003).
[Crossref]

M. Hill and R. J. K. Wood, “Modelling in the design of a flow-through ultrasonic separator,” Ultrasonics 38, 662–665 (2000).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Hoenders, B. J.

B. J. Hoenders, “The painful derivation of the refractive index from microscopical considerations,” in Proceedings of Light-Activated Tissue Regeneration and Therapy Conference, R. Waynant and D. B. Tata, eds., Vol. 12 in Lecture Notes in Electrical Engineering (Springer, 2008), pp. 297–305.

Hou, H.

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Huang, T. J.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Jensen, T. G.

S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
[Crossref]

Jiwaji, M.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Johansson, T.

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

Juncker, D.

E. Delamarche, D. Juncker, and H. Schmid, “Microfluidics for processing surfaces and miniaturizing biological assays,” Adv. Mater. 17, 2911–2933 (2005).
[Crossref]

Kaivola, M.

Kinsler, L. E.

L. E. Kinsler, Fundamentals of Acoustics, 4th ed. (Wiley, 2000).

Kokkonen, K.

Kutter, J. P.

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
[Crossref]

Lakämper, S.

S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
[Crossref]

Lamprecht, A.

S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
[Crossref]

Laurell, T.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
[Crossref]

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
[Crossref]

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
[Crossref]

M. Bengtsson and T. Laurell, “Ultrasonic agitation in microchannels,” Anal. Bioanal. Chem. 378, 1716–1721 (2004).
[Crossref]

Lee, C.-Y.

C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).

Lee, S.

Y. Chen and S. Lee, “Manipulation of biological objects using acoustic bubbles: a review,” Integr. Comp. Biol. 54, 959–968 (2014).

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Lenshof, A.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
[Crossref]

Levelt Sengers, J. S.

A. H. Harvey, J. S. Gallagher, and J. S. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–767 (1998).
[Crossref]

Li, P.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Lim, C.

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Lin, S.-C. S.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Lipiäinen, L.

López, G.

C. Wyatt Shields, C. Reyes, and G. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15, 1230–1249 (2015).
[Crossref]

Ludvigsen, H.

Madden, P. A.

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

Magaña, E.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Manneberg, O.

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
[Crossref]

Mantegazzi, D.

C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
[Crossref]

Mao, X.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Mark, D.

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

Melker Hagsäter, S.

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Mugele, F.

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
[Crossref]

Murade, C. U.

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
[Crossref]

Nama, N.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Nilsson, H.

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

Nilsson, J.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
[Crossref]

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
[Crossref]

Nilsson, S.

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

Novotny, S.

Önfelt, B.

O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
[Crossref]

Pall, G. S.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Pinnow, D.

D. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. 6, 223–238 (1970).
[Crossref]

Pitt, A. R.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Pitts, T.

T. Pitts, A. Sagers, and J. Greenleaf, “Optical phase contrast measurement of ultrasonic fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1686–1694 (2001).
[Crossref]

Reboud, J.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Reusser, E.

C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
[Crossref]

Reyes, C.

C. Wyatt Shields, C. Reyes, and G. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15, 1230–1249 (2015).
[Crossref]

Roth, G.

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

Sagers, A.

T. Pitts, A. Sagers, and J. Greenleaf, “Optical phase contrast measurement of ultrasonic fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1686–1694 (2001).
[Crossref]

Salanne, M.

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

Sanchez-Valle, C.

C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
[Crossref]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Schaap, I. A. T.

S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
[Crossref]

Schmid, H.

E. Delamarche, D. Juncker, and H. Schmid, “Microfluidics for processing surfaces and miniaturizing biological assays,” Adv. Mater. 17, 2911–2933 (2005).
[Crossref]

Schwab, O.

P. Hahn, O. Schwab, and J. Dual, “Modeling and optimization of acoustofluidic micro-devices,” Lab Chip 14, 3937–3948 (2014).
[Crossref]

Seitz, P.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
[Crossref]

Shavrin, I.

Shen, Y.

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

Shi, J.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Simon, C.

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

Skafte-Pedersen, P.

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

Slotcavage, D.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Soto, F.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Spirig, T.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
[Crossref]

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Stratton, Z. S.

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Svennebring, J.

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

Takeda, K.

K. Yasuda, S.-I. Umemura, and K. Takeda, “Concentration and fractionation of small particles in liquid by ultrasound,” Jpn. J. Appl. Phys. 34, 2715 (1995).

Tan, S.

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Turq, P.

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

Umemura, S.-I.

K. Yasuda, S.-I. Umemura, and K. Takeda, “Concentration and fractionation of small particles in liquid by ultrasound,” Jpn. J. Appl. Phys. 34, 2715 (1995).

Vanherberghen, B.

O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
[Crossref]

Vietze, O.

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
[Crossref]

Von Stetten, F.

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

Vuilleumier, R.

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

Wang, J.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Wang, Y.-N.

C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).

Wang, Z.

Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves,” Lab Chip 11, 1280–1285 (2011).
[Crossref]

Waters, A. P.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

White, N. M.

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

Wiklund, M.

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
[Crossref]

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

Wilson, R.

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Wong, G. S. K.

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

Wood, R. J. K.

M. Hill and R. J. K. Wood, “Modelling in the design of a flow-through ultrasonic separator,” Ultrasonics 38, 662–665 (2000).
[Crossref]

Wyatt Shields, C.

C. Wyatt Shields, C. Reyes, and G. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15, 1230–1249 (2015).
[Crossref]

Xu, T.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Yasuda, K.

K. Yasuda, S.-I. Umemura, and K. Takeda, “Concentration and fractionation of small particles in liquid by ultrasound,” Jpn. J. Appl. Phys. 34, 2715 (1995).

Zengerle, R.

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

Zhang, X.

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

Zhe, J.

Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves,” Lab Chip 11, 1280–1285 (2011).
[Crossref]

Adv. Mater. (1)

E. Delamarche, D. Juncker, and H. Schmid, “Microfluidics for processing surfaces and miniaturizing biological assays,” Adv. Mater. 17, 2911–2933 (2005).
[Crossref]

Anal. Bioanal. Chem. (1)

M. Bengtsson and T. Laurell, “Ultrasonic agitation in microchannels,” Anal. Bioanal. Chem. 378, 1716–1721 (2004).
[Crossref]

Anal. Chim. Acta (1)

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141–157 (2009).
[Crossref]

Biomicrofluidics (1)

H. Gu, C. U. Murade, M. H. G. Duits, and F. Mugele, “A microfluidic platform for on-demand formation and merging of microdroplets using electric control,” Biomicrofluidics 5, 011101 (2011).
[Crossref]

Biotechnol. Bioeng. (1)

J. Svennebring, O. Manneberg, P. Skafte-Pedersen, H. Bruus, and M. Wiklund, “Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity,” Biotechnol. Bioeng. 103, 323–328 (2009).
[Crossref]

Chem. Soc. Rev. (1)

D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39, 1153–1182 (2010).
[Crossref]

Electrophoresis (1)

H. Nilsson, M. Wiklund, T. Johansson, H. M. Hertz, and S. Nilsson, “Microparticles for selective protein determination in capillary electrophoresis,” Electrophoresis 22, 2384–2390 (2001).
[Crossref]

Enzyme Microb. Technol. (1)

J. J. Hawkes and W. T. Coakley, “A continuous flow ultrasonic cell-filtering method,” Enzyme Microb. Technol. 19, 57–62 (1996).

Europhys. Lett. (1)

O. Dron and J.-L. Aider, “Acoustic energy measurement for a standing acoustic wave in a micro-channel,” Europhys. Lett. 97, 44011 (2012).

IEEE J. Quantum Electron. (2)

D. Pinnow, “Guide lines for the selection of acoustooptic materials,” IEEE J. Quantum Electron. 6, 223–238 (1970).
[Crossref]

T. Spirig, P. Seitz, O. Vietze, and F. Heitger, “The lock-in CCD-two-dimensional synchronous detection of light,” IEEE J. Quantum Electron. 31, 1705–1708 (1995).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

T. Pitts, A. Sagers, and J. Greenleaf, “Optical phase contrast measurement of ultrasonic fields,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1686–1694 (2001).
[Crossref]

Int. J. Mol. Sci. (1)

C.-Y. Lee, C.-L. Chang, Y.-N. Wang, and L.-M. Fu, “Microfluidic mixing: a review,” Int. J. Mol. Sci. 12, 3263–3287 (2011).

Integr. Comp. Biol. (1)

Y. Chen and S. Lee, “Manipulation of biological objects using acoustic bubbles: a review,” Integr. Comp. Biol. 54, 959–968 (2014).

J. Acoust. Soc. Am. (3)

M. Hill, “The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators,” J. Acoust. Soc. Am. 114, 2654–2661 (2003).
[Crossref]

N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93, 1609–1612 (1993).
[Crossref]

R. T. Beyer, “Parameter of nonlinearity in fluids,” J. Acoust. Soc. Am. 32, 719–721 (1960).
[Crossref]

J. Am. Chem. Soc. (1)

T. Xu, F. Soto, W. Gao, R. Dong, V. Garcia-Gradilla, E. Magaña, X. Zhang, and J. Wang, “Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields,” J. Am. Chem. Soc. 137, 2163–2166 (2015).
[Crossref]

J. Chem. Phys. (1)

C. Sanchez-Valle, D. Mantegazzi, J. D. Bass, and E. Reusser, “Equation of state, refractive index and polarizability of compressed water to 7  GPa and 673  K,” J. Chem. Phys. 138, 054505 (2013).
[Crossref]

J. Phys. (1)

M. Salanne, R. Vuilleumier, P. A. Madden, C. Simon, P. Turq, and B. Guillot, “Polarizabilities of individual molecules and ions in liquids from first principles,” J. Phys. 20, 494207 (2008).

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. S. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–767 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yasuda, S.-I. Umemura, and K. Takeda, “Concentration and fractionation of small particles in liquid by ultrasound,” Jpn. J. Appl. Phys. 34, 2715 (1995).

Lab Chip (11)

X. Ding, P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, F. Costanzo, and T. J. Huang, “Surface acoustic wave microfluidics,” Lab Chip 13, 3626–3649 (2013).
[Crossref]

Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves,” Lab Chip 11, 1280–1285 (2011).
[Crossref]

C. Wyatt Shields, C. Reyes, and G. López, “Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation,” Lab Chip 15, 1230–1249 (2015).
[Crossref]

S. Lakämper, A. Lamprecht, I. A. T. Schaap, and J. Dual, “Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping,” Lab Chip 15, 290–300 (2015).
[Crossref]

J. J. Hawkes, R. W. Barber, D. R. Emerson, and W. T. Coakley, “Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,” Lab Chip 4, 446–452 (2004).
[Crossref]

H. Bruus, “Acoustofluidics 2: perturbation theory and ultrasound resonance modes,” Lab Chip 12, 20–28 (2012).
[Crossref]

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: building microfluidic acoustic resonators,” Lab Chip 12, 684–695 (2012).
[Crossref]

P. Hahn, O. Schwab, and J. Dual, “Modeling and optimization of acoustofluidic micro-devices,” Lab Chip 14, 3937–3948 (2014).
[Crossref]

S. M. Hagsäter, T. G. Jensen, H. Bruus, and J. P. Kutter, “Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations,” Lab Chip 7, 1336–1344 (2007).
[Crossref]

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, “Measuring the local pressure amplitude in microchannel acoustophoresis,” Lab Chip 10, 563–570 (2010).
[Crossref]

O. Manneberg, B. Vanherberghen, B. Önfelt, and M. Wiklund, “Flow-free transport of cells in microchannels by frequency-modulated ultrasound,” Lab Chip 9, 833–837 (2009).
[Crossref]

Med. Biol. Eng. Comput. (1)

A. Bhagat, H. Bow, H. Hou, S. Tan, J. Han, and C. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 999–1014 (2010).

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, and H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[Crossref]

Opt. Express (1)

Proc. Meet. Acoust. (1)

R. Barnkob and H. Bruus, “Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices,” Proc. Meet. Acoust. 6, 020001 (2009).

Proc. Natl. Acad. Sci. USA (1)

J. Reboud, Y. Bourquin, R. Wilson, G. S. Pall, M. Jiwaji, A. R. Pitt, A. Graham, A. P. Waters, and J. M. Cooper, “Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies,” Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

Sens. Actuators B (2)

J. J. Hawkes and W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flow,” Sens. Actuators B 75, 213–222 (2001).

N. R. Harris, M. Hill, S. Beeby, Y. Shen, N. M. White, J. J. Hawkes, and W. T. Coakley, “A silicon microfluidic ultrasonic separator,” Sens. Actuators B 95, 425–434 (2003).

Ultrasonics (2)

O. Manneberg, S. Melker Hagsäter, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus, and M. Wiklund, “Spatial confinement of ultrasonic force fields in microfluidic channels,” Ultrasonics 49, 112–119 (2009).
[Crossref]

M. Hill and R. J. K. Wood, “Modelling in the design of a flow-through ultrasonic separator,” Ultrasonics 38, 662–665 (2000).
[Crossref]

Other (3)

B. J. Hoenders, “The painful derivation of the refractive index from microscopical considerations,” in Proceedings of Light-Activated Tissue Regeneration and Therapy Conference, R. Waynant and D. B. Tata, eds., Vol. 12 in Lecture Notes in Electrical Engineering (Springer, 2008), pp. 297–305.

L. E. Kinsler, Fundamentals of Acoustics, 4th ed. (Wiley, 2000).

“CRC Handbook of Chemistry and Physics, 92nd ed., 2011–2012,” J. Am. Chem. Soc.133, 13766 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of the cross section of the microchannel. The half-wavelength line in the water illustrates the instantaneous acoustic pressure for the fundamental mode in the y -direction ( p 1 ), being positive on one side, 0 at the node in the center, and negative on the other side. The arrowed paths illustrate the optical paths for the light reflecting on the bottom ( B ) and top ( T ) of the water-filled channel. The excitation piezo is placed on the back of the silicon chip (see Fig. 2).

Fig. 2.
Fig. 2.

Schematic illustration of the experimental setup, which consists of a fast light-emitting diode (LED), a microscope objective (OBJ) (M Plan SLWD 40 × 0.40, Nikon), a mirror (M), an illumination lens ( L I ) ( f = 100 mm ), a nonpolarizing 50 50 beam splitter cube (BSC), a reference mirror on an axial translation stage ( M ref ), sample with a water-filled microchannel with an attached excitation piezo, a detection lens ( L D ) ( f = 75 mm ), and an EMCCD camera. The light path illustrates the path originating from one point on the light emitting area of the LED.

Fig. 3.
Fig. 3.

False-color top-view image of the microchannel. The red-colored regions indicate the silicon outside the microchannel and the dashed white rectangle indicates the measurement region.

Fig. 4.
Fig. 4.

Schematic illustration of the acousto-optic measurement method. For each mirror position z m (see Fig. 2), four frames are recorded, each with a different time delay τ of the light pulses with respect to the excitation of the pressure wave. The time delays differ by exactly a quarter of the period of the excitation signal. After scanning the mirror, four interferograms (pixel intensity as a function of mirror position) are available for each pixel { x , y } , differing only by τ , the moment the light probed the acoustic perturbation. The relative shift of the interferograms is a direct measure of the local acoustic pressure. The shifts are extracted by finding the peak location after cross correlation with a digital reference.

Fig. 5.
Fig. 5.

Pressure distribution p B ( x , y ) (left) and x -averages p ¯ B (right in red) and p ¯ T (right in gray) at different excitation frequencies of (a)  f = 1.9275 , (b)  f = 3.8275 , and (c)  f = 5.6675 MHz . Each pixel represents a region of 5 μm by 5 μm. The width of the shaded area equals 2 σ .

Fig. 6.
Fig. 6.

Mode spectrograms: x -averaged pressure amplitude distributions | p ¯ B | as functions of excitation frequency f in the vicinity of the resonances p 1 , p 2 , and p 3 , which are around f = 1.93 MHz , f = 3.83 MHz , and f = 5.67 MHz , respectively.

Fig. 7.
Fig. 7.

Measured energy density E a = p a 2 / ( 4 ρ 0 c 2 ) and a Lorentzian fit as a function of frequency for the p 1 mode.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p = p a cos ( n x π l x ) cos ( n y π w y ) cos ( n z π h z ) cos ( 2 π f n x , n y , n z t ) ,
f n x , n y , n z = c 2 n x 2 l 2 + n y 2 w 2 + n z 2 h 2 ,
E a = p a 2 / ( 4 ρ 0 c 2 ) ,
E a ( f ) = E 0 [ 2 Q f 0 ( f f 0 ) ] 2 + 1 ,
n 2 1 n 2 + 2 = 4 π / 3 ( ρ N A M ) α .
ρ d n d ρ = ( n 2 1 ) ( n 2 + 2 ) 6 n ( 1 Δ 0 ) ,
p = P P 0 = β s + 1 / 2 β ( γ 1 ) s 2 ,
d n d p = 1 ρ 0 c 2 ( n 2 1 ) ( n 2 + 2 ) 6 n ( s + 1 ) ( 1 + 3 / 2 ( γ 1 ) s ) .
δ n = α ac · p + ϵ ac · p 2 .
I ref = c 1 + c 2 cos ( 2 π / c 3 · z m + c 4 ) · exp ( ( z m c 5 ) 2 2 c 6 2 ) ,
I = z 0 + z 1 z 2 z 3 ,
Q = z 0 z 1 z 2 + z 3 ,
δ n = I 2 + Q 2 / 2 h ,
φ = tan 1 ( Q / I ) ,
p ( x , y ) = α a c + α a c 2 + 4 ϵ a c δ n cos ( 2 π φ ) 2 ϵ a c .

Metrics