Abstract

Electrowetting lenses with record low power consumption (microwatts) have been demonstrated using high-quality parylene AF-4 dielectric layers and large dodecyl sulfate ions. Water and propylene glycol are interchanged as the polar liquid to enable diverging and converging lens operation achievable with the application of 15 V. The optical quality of the lenses is comparable to conventional microlenses and the tuning exhibits very little (<0.5°) contact angle hysteresis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of electrowetting lens and prism arrays for wavefront compensation

Juliet T. Gopinath, Victor M. Bright, Carol C. Cogswell, Robert D. Niederriter, Alexander Watson, Ramzi Zahreddine, and Robert H. Cormack
Appl. Opt. 51(27) 6618-6623 (2012)

Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems

Robert D. Niederriter, Alexander M. Watson, Ramzi N. Zahreddine, Carol J. Cogswell, Robert H. Cormack, Victor M. Bright, and Juliet T. Gopinath
Appl. Opt. 52(14) 3172-3177 (2013)

Adaptive electrowetting lens-prism element

Soraya Terrab, Alexander M. Watson, Christopher Roath, Juliet T. Gopinath, and Victor M. Bright
Opt. Express 23(20) 25838-25845 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription