Abstract

A compact imaging system with reduced risk of damage owing to intense laser radiation is presented. We find that a pupil phase element may reduce the peak image plane irradiance from an undesirable laser source by two orders of magnitude, thereby protecting the detector from damage. The desired scene is reconstructed in postprocessing. The general image quality equation (GIQE) [Appl. Opt. 36, 8322 (1997) [CrossRef]  ] is used to estimate the interpretability of the resulting images. A localized loss of information caused by laser light is also described. This system may be advantageous over other radiation protection approaches because accurate pointing and nonlinear materials are not required.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental observations of a laser suppression imaging system using pupil-plane phase elements

Jacob H. Wirth, Abbie T. Watnik, and Grover A. Swartzlander
Appl. Opt. 56(33) 9205-9211 (2017)

Optimized pupil-plane phase masks for high-contrast imaging

Jacob H. Wirth, Abbie T. Watnik, and Grover A. Swartzlander
Appl. Opt. 57(20) 5688-5693 (2018)

Application of the general image-quality equation to aberrated imagery

Samuel T. Thurman and James R. Fienup
Appl. Opt. 49(11) 2132-2142 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).
  2. B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).
  3. W. A. Traub and B. R. Oppenheimer, “Direct imaging of exoplanets,” in Exoplanets, Space Science Series, S. Seager, ed. (University of Arizona, 2010), pp. 111–156.
  4. J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771–773 (2007).
    [Crossref]
  5. G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
    [Crossref]
  6. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
  7. Y.-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 42–90 (1999).
  8. I. C. Khoo, A. Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B 21, 1234–1240 (2004).
    [Crossref]
  9. M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
  10. G. Ritt, D. Walter, and B. Eberle, “Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB,” Proc. SPIE 8896, 88960G (2013).
  11. K. Riehl and L. A. Maver, “Comparison of two common aerial reconnaissance image quality measures,” Proc. SPIE 2829, 242–254 (1996).
  12. J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation: GIQE,” Appl. Opt. 36, 8322–8328 (1997).
    [Crossref]
  13. J. M. Irvine, “National imagery interpretability rating scales (NIIRS): overview and methodology,” Proc. SPIE 3128, 93–103 (1997).
  14. J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Systems: Modeling and Performance Prediction (Artech, 2001).
  15. J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford University, 2007).
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  17. J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).
  18. C. Zhang, L. Blarre, R. M. Walser, and M. F. Becker, “Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors,” Appl. Opt. 32, 5201–5210 (1993).
    [Crossref]
  19. http://www.spectra-physics.com/ .
  20. N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications (MIT, 1964).
  21. S. T. Thurman and J. R. Fienup, “Application of the general image-quality equation to aberrated imagery,” Appl. Opt. 49, 2132–2142 (2010).
    [Crossref]
  22. R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
    [Crossref]
  23. R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
    [Crossref]
  24. G. A. Swartzlander, “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497–499 (2001).
    [Crossref]
  25. J. P. Treviño, O. López-Cruz, and S. Chávez-Cerda, “Segmented vortex telescope and its tolerance to diffraction effects and primary aberrations,” Opt. Eng. 52, 081605 (2013).
    [Crossref]
  26. V. V. Kotlyar, S. N. Khonina, A. A. Kovalev, V. A. Soifer, H. Elfstrom, and J. Turunen, “Diffraction of a plane, finite-radius wave by a spiral phase plate,” Opt. Lett. 31, 1597–1599 (2006).
    [Crossref]
  27. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, O. Y. Moiseev, and V. A. Soifer, “Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate,” J. Opt. Soc. Am. A 24, 1955–1964 (2007).
    [Crossref]
  28. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).
  29. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation (SPIE, 2010).
  30. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  31. J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
  32. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972).
    [Crossref]
  33. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).
  34. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [Crossref]
  35. G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).
  36. A. B. Watson, ed., Digital Images and Human Vision (MIT, 1993).
  37. J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).
    [Crossref]
  38. X. Zhu and P. Milanfar, “Removing atmospheric turbulence via space-invariant deconvolution,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 157–170 (2013).
    [Crossref]
  39. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).
  40. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [Crossref]
  41. J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
    [Crossref]
  42. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005).
    [Crossref]
  43. G. J. Ruane, P. Kanburapa, J. Han, and G. A. Swartzlander, “Vortex-phase filtering technique for extracting spatial information from unresolved sources,” Appl. Opt. 53, 4503–4508 (2014).
    [Crossref]
  44. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26, 1424–1426 (2001).
    [Crossref]
  45. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
    [Crossref]
  46. C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
    [Crossref]
  47. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref]
  48. D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
    [Crossref]
  49. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
    [Crossref]
  50. N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, and M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21, 7400–7410 (2013).
    [Crossref]
  51. S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21, 8205–8213 (2013).
    [Crossref]

2014 (1)

2013 (6)

N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, and M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21, 7400–7410 (2013).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21, 8205–8213 (2013).
[Crossref]

G. Ritt, D. Walter, and B. Eberle, “Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB,” Proc. SPIE 8896, 88960G (2013).

J. P. Treviño, O. López-Cruz, and S. Chávez-Cerda, “Segmented vortex telescope and its tolerance to diffraction effects and primary aberrations,” Opt. Eng. 52, 081605 (2013).
[Crossref]

X. Zhu and P. Milanfar, “Removing atmospheric turbulence via space-invariant deconvolution,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 157–170 (2013).
[Crossref]

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

2007 (3)

V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, O. Y. Moiseev, and V. A. Soifer, “Diffraction of a finite-radius plane wave and a Gaussian beam by a helical axicon and a spiral phase plate,” J. Opt. Soc. Am. A 24, 1955–1964 (2007).
[Crossref]

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771–773 (2007).
[Crossref]

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

V. V. Kotlyar, S. N. Khonina, A. A. Kovalev, V. A. Soifer, H. Elfstrom, and J. Turunen, “Diffraction of a plane, finite-radius wave by a spiral phase plate,” Opt. Lett. 31, 1597–1599 (2006).
[Crossref]

2005 (2)

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005).
[Crossref]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

2004 (2)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

I. C. Khoo, A. Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B 21, 1234–1240 (2004).
[Crossref]

2003 (1)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

2002 (2)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).
[Crossref]

R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[Crossref]

2001 (3)

1999 (1)

Y.-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 42–90 (1999).

1998 (2)

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).

J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).

1997 (2)

J. M. Irvine, “National imagery interpretability rating scales (NIIRS): overview and methodology,” Proc. SPIE 3128, 93–103 (1997).

J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation: GIQE,” Appl. Opt. 36, 8322–8328 (1997).
[Crossref]

1996 (1)

K. Riehl and L. A. Maver, “Comparison of two common aerial reconnaissance image quality measures,” Proc. SPIE 2829, 242–254 (1996).

1993 (3)

G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
[Crossref]

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).

C. Zhang, L. Blarre, R. M. Walser, and M. F. Becker, “Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors,” Appl. Opt. 32, 5201–5210 (1993).
[Crossref]

1992 (2)

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
[Crossref]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

1990 (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

1989 (1)

M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).

1984 (1)

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

1972 (1)

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

1939 (1)

B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).

Absil, O.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Baba, N.

Baudoz, P.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Bazhenov, V. Y.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Becker, M. F.

C. Zhang, L. Blarre, R. M. Walser, and M. F. Becker, “Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors,” Appl. Opt. 32, 5201–5210 (1993).
[Crossref]

M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).

Blarre, L.

Boccaletti, A.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).

Bomzon, Z.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Bradley, W. C.

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

Brennan, M.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

Calus, J. R.

R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[Crossref]

Campillo, A. J.

G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
[Crossref]

Cannon, D.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

Chávez-Cerda, S.

J. P. Treviño, O. López-Cruz, and S. Chávez-Cerda, “Segmented vortex telescope and its tolerance to diffraction effects and primary aberrations,” Opt. Eng. 52, 081605 (2013).
[Crossref]

Chigrinov, V.

Christiaens, V.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Colburn, L.

Colvin, D. W.

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

Dainty, J. C.

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

Delacroix, C.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Diaz, A.

Ding, J.

Driggers, R. G.

J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Systems: Modeling and Performance Prediction (Artech, 2001).

Du, T.

Eberle, B.

G. Ritt, D. Walter, and B. Eberle, “Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB,” Proc. SPIE 8896, 88960G (2013).

Elfstrom, H.

Ellul, J. P.

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

Fenimore, C.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

Fienup, J. R.

Fiete, R. D.

R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[Crossref]

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[Crossref]

Forsberg, P.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Fukumoto, R.

Glindemann, A.

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Habraken, S.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Hamaguchi, S.

Han, J.

Hanot, C.

Hasman, E.

Heckenberg, N. R.

Huston, A. L.

G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
[Crossref]

Irvine, J.

Irvine, J. M.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

J. M. Irvine, “National imagery interpretability rating scales (NIIRS): overview and methodology,” Proc. SPIE 3128, 93–103 (1997).

Ise, A.

Israel, S. A.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

Justus, B. L.

G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
[Crossref]

Kanburapa, P.

Karlsson, M.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Ketchel, B. P.

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).

Khonina, S. N.

Khoo, I. C.

King, M. I. H.

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

Kleiner, V.

Kotlyar, V. V.

Kovalev, A. A.

Kuittinen, M.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Lagarias, J.

J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).

Lane, R. G.

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

Law, C. T.

G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
[Crossref]

Leach, J.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

Leachtenauer, J. C.

J. C. Leachtenauer, W. Malila, J. Irvine, L. Colburn, and N. Salvaggio, “General image-quality equation: GIQE,” Appl. Opt. 36, 8322–8328 (1997).
[Crossref]

J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Systems: Modeling and Performance Prediction (Artech, 2001).

Liewer, K.

López-Cruz, O.

J. P. Treviño, O. López-Cruz, and S. Chávez-Cerda, “Segmented vortex telescope and its tolerance to diffraction effects and primary aberrations,” Opt. Eng. 52, 081605 (2013).
[Crossref]

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

Lyot, B.

B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).

Malila, W.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Mariyenko, I. G.

Marrucci, L.

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Maver, L. A.

K. Riehl and L. A. Maver, “Comparison of two common aerial reconnaissance image quality measures,” Proc. SPIE 2829, 242–254 (1996).

Mawet, D.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

S. R. Nersisyan, N. V. Tabiryan, D. Mawet, and E. Serabyn, “Improving vector vortex waveplates for high-contrast coronagraphy,” Opt. Express 21, 8205–8213 (2013).
[Crossref]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
[Crossref]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

McDuff, R.

McEldowney, S.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Milanfar, P.

X. Zhu and P. Milanfar, “Removing atmospheric turbulence via space-invariant deconvolution,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 157–170 (2013).
[Crossref]

Miller, J.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

Miller, M. J.

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).

Moiseev, O. Y.

Mooney, J. A.

R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[Crossref]

Mott, A. G.

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).

Murakami, N.

Murauski, A.

Murtagh, F.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).
[Crossref]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Nersisyan, S. R.

O’Brien, G.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

O’Brien, N.

Oka, K.

Oppenheimer, B. R.

W. A. Traub and B. R. Oppenheimer, “Direct imaging of exoplanets,” in Exoplanets, Space Science Series, S. Seager, ed. (University of Arizona, 2010), pp. 111–156.

Padgett, M. J.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

Pantin, E.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).
[Crossref]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Reeds, J.

J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).

Riaud, P.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Richardson, W. H.

Riehl, K.

K. Riehl and L. A. Maver, “Comparison of two common aerial reconnaissance image quality measures,” Proc. SPIE 2829, 242–254 (1996).

Riggs, J. E.

Y.-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 42–90 (1999).

Ritt, G.

G. Ritt, D. Walter, and B. Eberle, “Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB,” Proc. SPIE 8896, 88960G (2013).

Roberts, J.

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

Ruane, G. J.

Sakamoto, M.

Salvaggio, N.

Santamato, E.

Schmidt, J. D.

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation (SPIE, 2010).

Schott, J. R.

J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford University, 2007).

Serabyn, E.

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Shemo, D.

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Skidanov, R. V.

Slussarenko, S.

Smith, C. P.

Soifer, V. A.

Soskin, M. S.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Starck, J. L.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).
[Crossref]

Strohaber, J.

Sun, Y.-P.

Y.-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 42–90 (1999).

Surdej, J.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Swartzlander, G. A.

Tabiryan, N. V.

Tamura, M.

Tantalo, T.

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[Crossref]

Tantalo, T. A.

R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[Crossref]

Thurman, S. T.

Traub, W. A.

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771–773 (2007).
[Crossref]

W. A. Traub and B. R. Oppenheimer, “Direct imaging of exoplanets,” in Exoplanets, Space Science Series, S. Seager, ed. (University of Arizona, 2010), pp. 111–156.

Trauger, J. T.

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771–773 (2007).
[Crossref]

Treviño, J. P.

J. P. Treviño, O. López-Cruz, and S. Chávez-Cerda, “Segmented vortex telescope and its tolerance to diffraction effects and primary aberrations,” Opt. Eng. 52, 081605 (2013).
[Crossref]

Tsoi, H. Y.

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

Turunen, J.

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).

Uiterwaal, C. J. G. J.

Vartiainen, I.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Vasnetsov, M. V.

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Walser, R. M.

C. Zhang, L. Blarre, R. M. Walser, and M. F. Becker, “Mechanisms for laser-induced functional damage to silicon charge-coupled imaging sensors,” Appl. Opt. 32, 5201–5210 (1993).
[Crossref]

M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).

Walter, D.

G. Ritt, D. Walter, and B. Eberle, “Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB,” Proc. SPIE 8896, 88960G (2013).

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

Watkins, S. E.

M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).

White, A. G.

White, J. J.

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

Wiener, N.

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications (MIT, 1964).

Wright, M.

J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).

Wright, P.

J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).

Zhang, C.

Zhang, C.-Z.

M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).

Zhu, X.

X. Zhu and P. Milanfar, “Removing atmospheric turbulence via space-invariant deconvolution,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 157–170 (2013).
[Crossref]

Appl. Opt. (4)

Astron. Astrophys. (1)

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013).
[Crossref]

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974).

Astrophys. J. (1)

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[Crossref]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

X. Zhu and P. Milanfar, “Removing atmospheric turbulence via space-invariant deconvolution,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 157–170 (2013).
[Crossref]

Int. J. Nonlinear Opt. Phys. (1)

G. A. Swartzlander, B. L. Justus, A. L. Huston, A. J. Campillo, and C. T. Law, “Characteristics of a low f-number broadband visible thermal optical limiter,” Int. J. Nonlinear Opt. Phys. 2, 577–611 (1993).
[Crossref]

Int. Rev. Phys. Chem. (1)

Y.-P. Sun and J. E. Riggs, “Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 42–90 (1999).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429–431 (1990).

Mon. Not. R. Astron. Soc. (1)

B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).

Nature (1)

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771–773 (2007).
[Crossref]

New J. Phys. (1)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003).
[Crossref]

Opt. Eng. (3)

J. P. Treviño, O. López-Cruz, and S. Chávez-Cerda, “Segmented vortex telescope and its tolerance to diffraction effects and primary aberrations,” Opt. Eng. 52, 081605 (2013).
[Crossref]

R. D. Fiete and T. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574–585 (2001).
[Crossref]

R. D. Fiete, T. A. Tantalo, J. R. Calus, and J. A. Mooney, “Image quality of sparse-aperture designs for remote sensing,” Opt. Eng. 41, 1957–1969 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref]

Proc. SPIE (7)

J. P. Ellul, H. Y. Tsoi, J. J. White, M. I. H. King, W. C. Bradley, and D. W. Colvin, “A buttable 2048 × 96 element TDI imaging array,” Proc. SPIE 501, 117–127 (1984).

G. O’Brien, S. A. Israel, J. M. Irvine, C. Fenimore, J. Roberts, M. Brennan, D. Cannon, and J. Miller, “Metrics to estimate image quality in compressed video sequences,” Proc. SPIE 6546, 65460A (2007).

M. F. Becker, C.-Z. Zhang, S. E. Watkins, and R. M. Walser, “Laser-induced damage to silicon CCD imaging sensors,” Proc. SPIE 1105, 68–77 (1989).

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).

G. Ritt, D. Walter, and B. Eberle, “Research on laser protection: an overview of 20 years of activities at Fraunhofer IOSB,” Proc. SPIE 8896, 88960G (2013).

K. Riehl and L. A. Maver, “Comparison of two common aerial reconnaissance image quality measures,” Proc. SPIE 2829, 242–254 (1996).

J. M. Irvine, “National imagery interpretability rating scales (NIIRS): overview and methodology,” Proc. SPIE 3128, 93–103 (1997).

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).

Publ. Astron. Soc. Pac. (1)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 114, 1051–1069 (2002).
[Crossref]

SIAM J. Optim. (1)

J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).

Waves Random Media (1)

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992).

Other (8)

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation (SPIE, 2010).

A. B. Watson, ed., Digital Images and Human Vision (MIT, 1993).

http://www.spectra-physics.com/ .

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications (MIT, 1964).

J. C. Leachtenauer and R. G. Driggers, Surveillance and Reconnaissance Systems: Modeling and Performance Prediction (Artech, 2001).

J. R. Schott, Remote Sensing: The Image Chain Approach (Oxford University, 2007).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

W. A. Traub and B. R. Oppenheimer, “Direct imaging of exoplanets,” in Exoplanets, Space Science Series, S. Seager, ed. (University of Arizona, 2010), pp. 111–156.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Diagram of the optical system with incident radiation from an unwanted laser source and background scene located at the ( x 0 , y 0 ) plane. The object distance z is large with respect to the Rayleigh range of the laser beam z R . A phase element is placed adjacent to a lens with focal length f and is bounded by aperture A ( x , y ) . Both the laser source and the spatially incoherent background scene are imaged at the ( x , y ) plane.
Fig. 2.
Fig. 2. Several example pupil phase elements that yield two orders of magnitude reduction in peak image plane irradiance. The phase patterns shown are (a) defocus, (b) astigmatism, (c) coma, (d) trefoil, (e) a charge l = 18 vortex phase element, and (f) an axicon with a = R / 28.3 . The phase is wrapped between π (black) and π (white).
Fig. 3.
Fig. 3. Horizontal line profiles (black) of the point spread functions (PSFs) corresponding to the pupil phase elements shown in Fig. 2. The PSF without a phase element (gray) is also shown in each case for comparison. The line profiles pass through the point of maximum amplitude and are normalized such that the maximum amplitude without a phase element is unity. We note that the functions shown in (c) and (d) are not circularly symmetric.
Fig. 4.
Fig. 4. Estimated loss in image quality Δ NIIRS for the incoherent scene as compared to an unprotected system plotted against the relative peak image plane irradiance owing to a bright laser point source in the object plane. The results are shown for GIQE versions (a) 3.0 and (b) 4.0 [12] as well as (c) the modified version suggested by Thurman and Fienup [21] for aberrated imagery. I 0 is the peak image plane irradiance without a pupil phase element. The data for the vortex phase element are plotted at integer values of topological charge l .
Fig. 5.
Fig. 5. Computed image with an l = 18 vortex phase pupil element (a) before and (b) after Wiener filtering. The deconvolved image without the vortex phase element (i.e., the unprotected system) is shown in (c) for comparison. The image dimensions are 794 × 1112 pixels.
Fig. 6.
Fig. 6. Computed image with an l = 18 vortex phase pupil element in the presence of a potentially damaging laser source (before postprocessing). Without the phase pupil element, permanent damage would occur on the sensor. Image plane exposure profiles along the dashed lines are shown in Fig. 7 with and without the protection provided by the pupil phase element.
Fig. 7.
Fig. 7. Profiles of image plane exposure along the dashed line in Fig. 6. Without the pupil phase element ( l = 0 ), the detector may become damaged. The l = 18 vortex phase pupil element reduces the peak exposure to a safe level by spreading out the laser light.
Fig. 8.
Fig. 8. Computed images after postprocessing with Wiener deconvolution for Φ peak / Φ sat = (a)  10 2 , (b)  10 3 , (c)  10 4 , and (d)  10 5 , where Φ peak is defined with the l = 18 vortex phase element in the pupil plane of the optical system.
Fig. 9.
Fig. 9. Computed, recovered images with the l = 18 vortex phase element, Φ peak / Φ sat = 10 2 , and SNR = 128 . (a), (b) Recovered images using Wiener deconvolution with (a) the laser contribution subtracted and (b) after gradient-based speckle reduction. The ringing artifacts are reduced as compared to Fig. 8(a). (c), (d) Recovered images using Lucy–Richardson iterative deconvolution, where (c) is the recovered image using only the Lucy–Richardson iterative deconvolution algorithm (i.e., without performing the laser removal process) and (d) is the recovered image with the laser contribution removed. For this example, 10 iterations of gradient-based speckle suppression and 20 iterations of Lucy–Richardson deconvolution are used.

Tables (1)

Tables Icon

Table 1. Coefficients of the GIQE [12]

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I L ( x , y , λ L ) = α | U g ( x , y ) * h ( x , y , λ L ) | 2 ,
I b ( x , y , λ b ) = β ( b g ( x , y , λ b ) * | h ( x , y , λ b ) | 2 ) ,
h ( x , y , λ ) = FT { A ( x , y ) t ( x , y ) } = A ( x , y ) t ( x , y ) × exp ( i 2 π λ f ( x x + y y ) ) d x d y ,
Φ ( x , y , λ ) = 0 Δ t I ( x , y , λ , t ) d t ,
G n , m = γ I ˜ b ( n Δ x , m Δ x ) + V n , m ,
I ˜ b ( x , y ) = I b ( x , y ) * d ( x , y ) ,
W ( k Δ ξ , p Δ η ) = H ˜ * ( k Δ ξ , p Δ η ) | H ˜ ( k Δ ξ , p Δ η ) | 2 + 1 / SNR ,
NIIRS = c 0 + c 1 log 10 ( GSD ) + c 2 log 10 ( RER ) + c 3 G / SNR + c 4 H ,
Δ NIIRS = NIIRS NIIRS 0 ,
Δ NIIRS 3.0 , 4.0 = c 2 log 10 ( RER RER 0 ) + c 3 ( G G 0 SNR ) + c 4 ( H H 0 ) ,
Δ NIIRS T - F = log 2 ( RER RER 0 ) 2.3 ( G G 0 SNR ) .
RER x , y = ER x , y ( Δ x / 2 ) ER x , y ( Δ x / 2 ) ,
Θ ( u ) = { 1 u > 0 0 u < 0
ER x ( x ) = FT 1 { FT { Θ ( x ) } H ˜ ( ξ , η ) W ( ξ , η ) } | y = 0 ,
ER y ( y ) = FT 1 { FT { Θ ( y ) } H ˜ ( ξ , η ) W ( ξ , η ) } | x = 0 .
G = n = 1 N m = 1 M w n , m 2 n = 1 N m = 1 M w n , m ,
SNR = S avg S avg + σ 2 ,
h ( x , y , λ ) = FT { circ ( r / R ) exp ( i l θ ) } = C l exp ( i l θ ) 0 R J l ( 2 π r r / λ f ) r d r ,
E = n , m [ G n , m Φ ^ ( n Δ x , m Δ x ) ] 2 , ( n , m ) ROI ,
X n , m = G n , m Φ ^ ( n Δ x , m Δ x ) .
X n , m ( i + 1 ) = X n , m ( i ) × ( 1 ε | X n , m ( i ) | ) ,

Metrics