Abstract

Measured spectral absorption coefficients were inverted to infer phytoplankton concentration in three size classes (picoplankton, nanoplankton, and microplankton), chlorophyll concentration [Chl], and both magnitude and spectral shape of absorption by colored detrital matter (CDM). Our algorithm allowed us to solve for the nonlinear factor of CDM absorption slope separately from the other linear factors, thus fully utilizing the additive characteristic inherent in absorption coefficients. We validated the inversion with three datasets: two spatially distributed global datasets, the Laboratoire d’Océanographie de Villefranche dataset and the NASA bio-Optical Marine Algorithm Dataset, and a time series coastal dataset, the Martha’s Vineyard Coastal Observatory dataset. Comparison with high performance liquid chromatography analyses showed that the phytoplankton size classes can be retrieved with correlation coefficients (r)>0.7, root mean square errors of 0.2, and median relative errors of 20% in oceanic waters and with similar performance in coastal waters. Much improved agreement was found for the entire phytoplankton population, with r>0.90 for [Chl] and absorption coefficients (aph) for all three datasets. The inferred aCDM(400) and CDM spectral slope agree within ±4% of measurements in both oceanic and coastal waters. The results indicate that the chlorophyll-a specific absorption spectra used as an inversion kernel represent well the global mean states for each of the three phytoplankton size classes. The method can be applied to either bulk or particulate absorption data and is spectrally flexible.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Model of phytoplankton absorption based on three size classes

Robert J. W. Brewin, Emmanuel Devred, Shubha Sathyendranath, Samantha J. Lavender, and Nick J. Hardman-Mountford
Appl. Opt. 50(22) 4535-4549 (2011)

Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean

Robert J.W. Brewin, Giorgio Dall’Olmo, Shubha Sathyendranath, and Nick J. Hardman-Mountford
Opt. Express 20(16) 17632-17652 (2012)

Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site)

Emanuele Organelli, Annick Bricaud, David Antoine, and Julia Uitz
Appl. Opt. 52(11) 2257-2273 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription