Abstract

We investigate the reduction of transition loss across the star coupler boundary in a silicon arrayed waveguide grating (AWG) by suppressing multimode generation and scattering near the boundary of a star coupler. Eight-channel silicon AWGs were designed with optimal conditions based on enhanced field matching in combination with ultrashallow etched structures. The fabricated AWG demonstrates an insertion loss down to 0.63 dB with a cross talk of 23 to 25.3dB, exhibiting 0.8dB improvement of insertion loss and 4dB improvement of cross talk compared to the Si AWG fabricated with a conventional double-etch technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides

Linghua Wang, Wim Bogaerts, Pieter Dumon, Shankar Kumar Selvaraja, Jie Teng, Shibnath Pathak, Xiuyou Han, Jinyan Wang, Xigao Jian, Mingshan Zhao, Roel Baets, and Geert Morthier
Appl. Opt. 51(9) 1251-1256 (2012)

Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen
Opt. Express 14(2) 664-669 (2006)

Performance improvement for silicon-based arrayed waveguide grating router

Jun Zou, Zichun Le, Jinhua Hu, and Jian-Jun He
Opt. Express 25(9) 9963-9973 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
    [Crossref]
  2. M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
    [Crossref]
  3. B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol. 29, 2009–2011 (2011).
  4. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
    [Crossref]
  5. D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
    [Crossref]
  6. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
    [Crossref]
  7. T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).
  8. J. Zou, X. Xia, G. Chen, T. Lang, and J.-J. He, “Birefringence compensated silicon nanowire arrayed waveguide grating for CWDM optical interconnects,” Opt. Lett. 39, 1834–1837 (2014).
    [Crossref]
  9. D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
    [Crossref]
  10. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
    [Crossref]
  11. S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38, 2961–2964 (2013).
    [Crossref]
  12. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22, 9395–9403 (2014).
    [Crossref]
  13. K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38, 3530–3533 (2013).
    [Crossref]
  14. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).
  15. S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
    [Crossref]
  16. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
    [Crossref]
  17. Omnisim/Fimmwave/Fimmprop, Photon Design; http://www.photond.com .
  18. Beamprop, Synopsys; http://optics.synopsys.com/rsoft/ .

2014 (5)

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).

J. Zou, X. Xia, G. Chen, T. Lang, and J.-J. He, “Birefringence compensated silicon nanowire arrayed waveguide grating for CWDM optical interconnects,” Opt. Lett. 39, 1834–1837 (2014).
[Crossref]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22, 9395–9403 (2014).
[Crossref]

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

2013 (2)

2011 (2)

2010 (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

2008 (1)

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

2006 (1)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

2005 (1)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

2004 (1)

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

2000 (1)

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

1996 (1)

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
[Crossref]

Absil, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Barbarin, Y.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

Bauters, J. F.

Beats, R.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Bente, E. A. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
[Crossref]

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38, 2961–2964 (2013).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Bowers, J.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Chen, G.

Chu, T.

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).

Dai, D.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Diemeer, M. B. J.

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
[Crossref]

Dumon, P.

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Fu, Y.

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).

Gan, F.

He, J.-J.

He, S.

Heck, M. J. R.

Himeno, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Ishida, K.

Itoh, M.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Jiao, Y.

Kaneko, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Kim, D.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

Kim, G.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

Kooiman, J. R.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

Lang, T.

Lee, J.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

Leijtens, X. J. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

Lepage, G.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Li, L.

Li, W.

Louzao, C. M.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Ohmori, Y.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Okamoto, K.

K. Okamoto and K. Ishida, “Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors,” Opt. Lett. 38, 3530–3533 (2013).
[Crossref]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Pang, A.

Pathak, S.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
[Crossref]

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38, 2961–2964 (2013).
[Crossref]

Pyo, J.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

Qi, M.

Qiao, L.

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).

Ramsamoedj, R.

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Sheng, Z.

Smit, M. K.

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
[Crossref]

Song, J.

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

Spiekman, L. H.

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
[Crossref]

Sugita, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Tien, M.-C.

Van Thourhout, D.

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

S. Pathak, D. Van Thourhout, and W. Bogaerts, “Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications,” Opt. Lett. 38, 2961–2964 (2013).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Verheyen, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Wang, J.

Wang, X.

Wang, Z.

Wiaux, V.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

Wu, A.

Xia, X.

Yang, B.

Yang, L.

Ye, T.

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).

Zhu, Y.

Zou, J.

Zou, S.

Electron. Lett. (2)

M. B. J. Diemeer, L. H. Spiekman, R. Ramsamoedj, and M. K. Smit, “Polymeric phased array wavelength multiplexer operating around 1550 nm,” Electron. Lett. 32, 1132–1133 (1996).
[Crossref]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 μm × 60 μm size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. Beats, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

IEEE Photon. J. (1)

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photon. J. 6, 4900109 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (4)

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16, 2478–2480 (2004).
[Crossref]

D. Kim, J. Lee, J. Song, J. Pyo, and G. Kim, “Crosstalk reduction in a shallow-etched silicon nanowire AWG,” IEEE Photon. Technol. Lett. 20, 1615–1617 (2008).
[Crossref]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photon. Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Mater. Express 22, 31899–31906 (2014).

Other (2)

Omnisim/Fimmwave/Fimmprop, Photon Design; http://www.photond.com .

Beamprop, Synopsys; http://optics.synopsys.com/rsoft/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Calculated single-mode coupling conditions in the coupled structure of a slab and a rib WG as a function of W and D . Inset shows a schematic diagram of a simulation for a light propagation from a slab to a rib WG.
Fig. 2.
Fig. 2. (a) Schematic diagram of a star coupler boundary, which has a 20 nm etched WG array coupled with a slab structure, and the calculated optical field image of a star coupler. Inset figure shows an optical field image of 2 μm long taper. (b) Calculated optical field profiles at positions of z1, z2, z3, and z4 in Fig 2(a).
Fig. 3.
Fig. 3. (a) Schematic diagram of a star coupler structure combined with ultrashallow and deep etched AWGs for a calculation of the transition loss. (b) One example of a calculated optical field image for a star coupler that has the structure in Fig. (a) with D of 20 nm and L opt of 9 μm. (c) Calculated parameters W versus D , which satisfies the single-mode coupling conditions of Fig. 1. (d) Black square: calculated parameters L opt versus D , which give minimum transition losses. Red circle: calculated transition losses for a star coupler with the optimal parameters of W , L opt and D .
Fig. 4.
Fig. 4. Microscopic images and SEM images of (a) AWG-D19s with L 7 μm and a footprint of 400 μm × 260 μm and (b) AWG-D88s with W = 3.25 μm and a footprint of 450 μm × 350 μm .
Fig. 5.
Fig. 5. Measured insertion losses of the Si AWGs with a D of (a) 13.7 nm, (b) 19.6 nm, and (c) 35.3 nm, as a function of L , and measured transmission spectra of the Si AWGs marked with red circles in the insertion loss graphs.
Fig. 6.
Fig. 6. (a) Measured insertion losses and cross talks of the fabricated AWG-D88s group at the center wavelength as a function of W . (b) Measured normalized transmission spectra of Si AWGs with an aperture size W of 1.25, 1.75, and 3.25 μm, which are marked with blue circles in the insertion loss graph.
Fig. 7.
Fig. 7. Microphotogaphy and measured normalized transmission spectra of the fabricated 8 × 400 GHz Si AWG, which has a FSR of 51.2 nm and a D of 23 nm .
Fig. 8.
Fig. 8. Summary of the fabricated Si AWGs that have different shallow etch depth D and aperture size W at the boundary of a star coupler. The red bar indicates the variation of the measured insertion losses and cross talks.

Tables (1)

Tables Icon

Table 1. Summary of Design Parameters for Fabricated Eight-Channel Si AWGs with 400 GHz Channel Spacing

Metrics