Abstract

A novel structure for thin-film solar cells is simulated with the purpose of maximizing the absorption of light in the active layer and of reducing the parasitic absorption in other layers. In the proposed structure, the active layer is formed from an amorphous silicon thin film sandwiched between silicon nanowires from above and photonic crystal structures from below. The upper electrical contact consists of an indium tin oxide layer, which serves also as an antireflection coating. A metal backreflector works additionally as the other contact. The simulation was done using a new reliable, efficient and generic optoelectronic approach. The suggested multiscale simulation model integrates the finite-difference time-domain algorithm used in solving Maxwell’s equation in three dimensions with a commercial simulation platform based on the finite element method for carrier transport modeling. The absorption profile, the external quantum efficient, and the power conversion efficiency of the suggested solar cell are calculated. A noticeable enhancement is found in all the characteristics of the novel structure with an estimated 32% increase in the total conversion efficiency over a cell without any light trapping mechanisms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement

Hamid Heidarzadeh, Ali Rostami, Samiye Matloub, Mahboubeh Dolatyari, and Ghassem Rostami
Appl. Opt. 54(12) 3591-3601 (2015)

Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells

Constantin Simovski, Dmitry Morits, Pavel Voroshilov, Michael Guzhva, Pavel Belov, and Yuri Kivshar
Opt. Express 21(S4) A714-A725 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription