Abstract

We study experimentally the effective duty cycle of galvanometer-based scanners (GSs) with regard to three main parameters of the scanning process: theoretical/imposed duty cycle (of the input signal), scan frequency, and scan amplitude. Sawtooth and triangular input signals for the device are considered. The effects of the mechanical inertia of the oscillatory element of the GS are analyzed and their consequences are discussed in the context of optical coherence tomography (OCT) imaging. When the theoretical duty cycle and the scan amplitude are increased to the limit, the saturation of the device is demonstrated for a useful range of scan frequencies by direct measurement of the position of the galvomirror. Investigations of OCT imaging of large samples also validate this saturation, as examplified by the gaps/blurred portions obtained between neighboring images when using both triangular and sawtooth scanning at high scan frequencies. For this latter aspect, the necessary overlap between neighboring B-scans, and therefore between the corresponding volumetric reconstructions of the sample, are evaluated and implemented with regard to the same parameters of the scanning process. OCT images that are free of these artifacts are thus obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT

Virgil-Florin Duma, Kye-sung Lee, Panomsak Meemon, and Jannick P. Rolland
Appl. Opt. 50(29) 5735-5749 (2011)

MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy

Andrea Cogliati, Cristina Canavesi, Adam Hayes, Patrice Tankam, Virgil-Florin Duma, Anand Santhanam, Kevin P. Thompson, and Jannick P. Rolland
Opt. Express 24(12) 13365-13374 (2016)

Effective bidirectional scanning pattern for optical coherence tomography angiography

Myeong Jin Ju, Morgan Heisler, Arman Athwal, Marinko V. Sarunic, and Yifan Jian
Biomed. Opt. Express 9(5) 2336-2350 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
    [Crossref]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
    [Crossref]
  3. A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retinal Eye Res. 27, 464–499 (2008).
    [Crossref]
  4. G. F. Marshall, Handbook of Optical and Laser Scanning (CRC Press, 2011).
  5. M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), pp. 30.1–30.68.
  6. Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976–5985 (2008).
    [Crossref]
  7. K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
    [Crossref]
  8. Y. Li, “Third-order theory of the Risley-prism-based beam steering system,” Appl. Opt. 50, 679–686 (2011).
    [Crossref]
  9. A. Schitea, M. Tuef, and V. F. Duma, “Modeling of Risley prisms devices for exact scan patterns,” Proc. SPIE 8789, 878912 (2013).
  10. D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
    [Crossref]
  11. X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010).
    [Crossref]
  12. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
    [Crossref]
  13. A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
    [Crossref]
  14. C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005).
    [Crossref]
  15. B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [Crossref]
  16. R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
    [Crossref]
  17. D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).
  18. V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 75560B (2010).
  19. R. P. Aylward, “Advances and technologies of galvanometer-based optical scanners,” Proc. SPIE 3787, 158–164 (1999).
  20. J. S. Gadhok, “Achieving high-duty cycle sawtooth scanning with galvanometric scanners,” Proc. SPIE 3787, 173–180 (1999).
  21. J. Montagu, “Scanners—galvanometric and resonant,” in Encyclopedia of Optical Engineering, R. G. Driggers, C. Hoffman, and R. Driggers, eds. (Taylor & Francis, 2003), pp. 2465–2487.
    [Crossref]
  22. V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
    [Crossref]
  23. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
    [Crossref]
  24. V. F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49, 103001 (2010).
    [Crossref]
  25. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
    [Crossref]
  26. C. Mnerie and V. F. Duma, “Mathematical model of a galvanometer-based scanner: simulations and experiments,” Proc. SPIE 8789, 878915 (2013).
  27. K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
    [Crossref]
  28. K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
    [Crossref]
  29. P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
    [Crossref]
  30. A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
    [Crossref]
  31. P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
    [Crossref]
  32. Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
    [Crossref]
  33. H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
    [Crossref]

2014 (5)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

2013 (3)

P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
[Crossref]

C. Mnerie and V. F. Duma, “Mathematical model of a galvanometer-based scanner: simulations and experiments,” Proc. SPIE 8789, 878915 (2013).

A. Schitea, M. Tuef, and V. F. Duma, “Modeling of Risley prisms devices for exact scan patterns,” Proc. SPIE 8789, 878912 (2013).

2012 (3)

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
[Crossref]

2011 (3)

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
[Crossref]

Y. Li, “Third-order theory of the Risley-prism-based beam steering system,” Appl. Opt. 50, 679–686 (2011).
[Crossref]

2010 (5)

V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 75560B (2010).

X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010).
[Crossref]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
[Crossref]

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
[Crossref]

V. F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49, 103001 (2010).
[Crossref]

2008 (2)

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retinal Eye Res. 27, 464–499 (2008).
[Crossref]

Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976–5985 (2008).
[Crossref]

2007 (2)

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[Crossref]

2006 (1)

D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
[Crossref]

2005 (2)

C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

1999 (3)

R. P. Aylward, “Advances and technologies of galvanometer-based optical scanners,” Proc. SPIE 3787, 158–164 (1999).

J. S. Gadhok, “Achieving high-duty cycle sawtooth scanning with galvanometric scanners,” Proc. SPIE 3787, 173–180 (1999).

K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
[Crossref]

1998 (1)

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[Crossref]

Aylward, R. P.

R. P. Aylward, “Advances and technologies of galvanometer-based optical scanners,” Proc. SPIE 3787, 158–164 (1999).

Basavanhally, A. N.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

Bass, M.

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), pp. 30.1–30.68.

Baumann, B.

B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[Crossref]

Braaf, B.

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
[Crossref]

Bradu, A.

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Buehler, C.

K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
[Crossref]

Cable, A. E.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Canavesi, C.

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

Cernat, R.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Cho, H.

X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010).
[Crossref]

Choi, W.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Chughtai, O. Q.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

Cid, M. G.

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

Cucu, R. G.

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

de Boer, J. F.

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
[Crossref]

Demian, D.

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

Dobre, G.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Dobre, G. M.

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[Crossref]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

Duker, J. S.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Duma, V. F.

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

A. Schitea, M. Tuef, and V. F. Duma, “Modeling of Risley prisms devices for exact scan patterns,” Proc. SPIE 8789, 878912 (2013).

C. Mnerie and V. F. Duma, “Mathematical model of a galvanometer-based scanner: simulations and experiments,” Proc. SPIE 8789, 878915 (2013).

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 75560B (2010).

V. F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49, 103001 (2010).
[Crossref]

Ferraro, P.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Finizio, A.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Fujimoto, J. G.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Gadhok, J. S.

J. S. Gadhok, “Achieving high-duty cycle sawtooth scanning with galvanometric scanners,” Proc. SPIE 3787, 173–180 (1999).

Gelikonov, G.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Gelikonov, V.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Geltrude, A.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Götzinger, E.

B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[Crossref]

Hitzenberger, Ch. K.

B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[Crossref]

Hornegger, J.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Hutiu, Gh.

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

Jackson, D. A.

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[Crossref]

Janabi-Sharifi, F.

X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010).
[Crossref]

Jayaraman, V.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Jenkins, M. W.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

Kim, K. H.

K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
[Crossref]

Kraus, M. F.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

Lee, K.

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
[Crossref]

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
[Crossref]

Lee, K.-S.

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

Li, Y.

Y. Li, “Third-order theory of the Risley-prism-based beam steering system,” Appl. Opt. 50, 679–686 (2011).
[Crossref]

Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976–5985 (2008).
[Crossref]

Liang, H.

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

Liu, J. J.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

Locatelli, M.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Lu, C. D.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Marshall, G. F.

G. F. Marshall, Handbook of Optical and Laser Scanning (CRC Press, 2011).

Matsushita, K.

D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
[Crossref]

Meemon, P.

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
[Crossref]

Meucci, R.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Miyazaki, D.

D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
[Crossref]

Mnerie, C.

C. Mnerie and V. F. Duma, “Mathematical model of a galvanometer-based scanner: simulations and experiments,” Proc. SPIE 8789, 878915 (2013).

Montagu, J.

J. Montagu, “Scanners—galvanometric and resonant,” in Encyclopedia of Optical Engineering, R. G. Driggers, C. Hoffman, and R. Driggers, eds. (Taylor & Francis, 2003), pp. 2465–2487.
[Crossref]

Negrutiu, M. L.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

Pang, J.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Paturzo, M.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Pedro, J.

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

Pelagotti, A.

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

Picart, P.

P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
[Crossref]

Pircher, M.

B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[Crossref]

Podoleanu, A. Gh.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 75560B (2010).

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retinal Eye Res. 27, 464–499 (2008).
[Crossref]

C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[Crossref]

Potsaid, B.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

Rogers, J.

C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005).
[Crossref]

Rolland, J. P.

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
[Crossref]

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 75560B (2010).

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
[Crossref]

Rollins, A. M.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

Rosa, C. C.

C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005).
[Crossref]

Rosen, R. B.

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retinal Eye Res. 27, 464–499 (2008).
[Crossref]

Santhanan, A. P.

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

Saunders, D.

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

Schitea, A.

A. Schitea, M. Tuef, and V. F. Duma, “Modeling of Risley prisms devices for exact scan patterns,” Proc. SPIE 8789, 878912 (2013).

Shiba, K.

D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
[Crossref]

Sinescu, C.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

So, P. T. C.

K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
[Crossref]

Sotsuka, K.

D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
[Crossref]

Tadrous, P. J.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Tankam, P.

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
[Crossref]

Tao, X.

X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010).
[Crossref]

Tatla, T. S.

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

Thompson, K. P.

K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
[Crossref]

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
[Crossref]

Topala, F. I.

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

Tuef, M.

A. Schitea, M. Tuef, and V. F. Duma, “Modeling of Risley prisms devices for exact scan patterns,” Proc. SPIE 8789, 878912 (2013).

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

Vermeer, K. A.

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
[Crossref]

Vienola, K. V.

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
[Crossref]

Watanabe, M.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

Wojtkowski, M.

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
[Crossref]

Won, J.

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

Appl. Opt. (8)

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49, D30–D61 (2010).
[Crossref]

Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976–5985 (2008).
[Crossref]

K. H. Kim, C. Buehler, and P. T. C. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
[Crossref]

Y. Li, “Third-order theory of the Risley-prism-based beam steering system,” Appl. Opt. 50, 679–686 (2011).
[Crossref]

X. Tao, H. Cho, and F. Janabi-Sharifi, “Optical design of a variable view imaging system with the combination of a telecentric scanner and double wedge prisms,” Appl. Opt. 49, 239–246 (2010).
[Crossref]

V. F. Duma, K.-S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50, 5735–5749 (2011).
[Crossref]

P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
[Crossref]

Gh. Hutiu, V. F. Duma, D. Demian, A. Bradu, and A. Gh. Podoleanu, “Surface imaging of metallic material fractures using optical coherence tomography,” Appl. Opt. 53, 5912–5916 (2014).
[Crossref]

Biomed. Opt. Express (2)

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5, 293–311 (2014).
[Crossref]

R. Cernat, T. S. Tatla, J. Pang, P. J. Tadrous, A. Bradu, G. Dobre, G. Gelikonov, V. Gelikonov, and A. Gh. Podoleanu, “Dual instrument for in vivo and ex vivo OCT imaging in an ENT department,” Biomed. Opt. Express 3, 3346–3356 (2012).
[Crossref]

J. Biomed. Opt. (3)

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt. 12, 030505 (2007).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref]

P. Tankam, A. P. Santhanan, K. Lee, J. Won, C. Canavesi, and J. P. Rolland, “Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy,” J. Biomed. Opt. 19, 071410 (2014).
[Crossref]

J. Eng. Med. (1)

D. Demian, V. F. Duma, C. Sinescu, M. L. Negrutiu, R. Cernat, F. I. Topala, Gh. Hutiu, A. Bradu, and A. Gh. Podoleanu, “Design and testing of prototype handheld scanning probes for optical coherence tomography,” J. Eng. Med. 228, 743–753 (2014).

Opt. Eng. (1)

V. F. Duma, “Optimal scanning function of a galvanometer scanner for an increased duty cycle,” Opt. Eng. 49, 103001 (2010).
[Crossref]

Opt. Express (6)

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20, 20516–20534 (2012).
[Crossref]

D. Miyazaki, K. Shiba, K. Sotsuka, and K. Matsushita, “Volumetric display system based on three dimensional scanning of inclined optical image,” Opt. Express 14, 12760–12769 (2006).
[Crossref]

B. Baumann, M. Pircher, E. Götzinger, and Ch. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[Crossref]

A. Pelagotti, M. Paturzo, M. Locatelli, A. Geltrude, R. Meucci, A. Finizio, and P. Ferraro, “An automatic method for assembling a large synthetic aperture digital hologram,” Opt. Express 20, 4830–4839 (2012).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography—a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133–6144 (2005).
[Crossref]

K. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
[Crossref]

Opt. Lett. (3)

K. Lee, K. P. Thompson, P. Meemon, and J. P. Rolland, “Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging,” Opt. Lett. 36, 2221–2223 (2011).
[Crossref]

A. Gh. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[Crossref]

C. C. Rosa, J. Rogers, and A. Gh. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30, 3263–3265 (2005).
[Crossref]

Proc. SPIE (5)

V. F. Duma, J. P. Rolland, and A. Gh. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 7556, 75560B (2010).

R. P. Aylward, “Advances and technologies of galvanometer-based optical scanners,” Proc. SPIE 3787, 158–164 (1999).

J. S. Gadhok, “Achieving high-duty cycle sawtooth scanning with galvanometric scanners,” Proc. SPIE 3787, 173–180 (1999).

A. Schitea, M. Tuef, and V. F. Duma, “Modeling of Risley prisms devices for exact scan patterns,” Proc. SPIE 8789, 878912 (2013).

C. Mnerie and V. F. Duma, “Mathematical model of a galvanometer-based scanner: simulations and experiments,” Proc. SPIE 8789, 878915 (2013).

Prog. Retinal Eye Res. (1)

A. Gh. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retinal Eye Res. 27, 464–499 (2008).
[Crossref]

Other (3)

G. F. Marshall, Handbook of Optical and Laser Scanning (CRC Press, 2011).

M. Bass, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), pp. 30.1–30.68.

J. Montagu, “Scanners—galvanometric and resonant,” in Encyclopedia of Optical Engineering, R. G. Driggers, C. Hoffman, and R. Driggers, eds. (Taylor & Francis, 2003), pp. 2465–2487.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic illustrating the operating principle of a galvanometer-based scanner (GS), with constructive parameters: J , moment of inertia of the mobile element (with galvomirror); c , damping coefficient; k , elastic coefficient of the torsion springs that support the mobile element.
Fig. 2.
Fig. 2. Study of sawtooth scanning functions/output signals (i.e., angular positions of the galvomirror) of a GS for input signals with different theoretical duty cycles η t equal to (a1) 50% (triangular function), (a2) 75%, and (a3) 87.5%; (b1)–(b3) output signals (positions of the galvomirror) for a scan frequency f s = 50 Hz ; (c1)–(c3) output signals for f s = 500 Hz ; (d1)–(d3) effective duty cycle of the GS with regard to f s for three different driving duty cycles and different scan amplitudes θ m of 0.2, 0.4, 0.8, 1.6, and 3.2 V (where 1 V corresponds to about 7.6 deg of optical scan angle).
Fig. 3.
Fig. 3. Study of the effective duty cycle of a GS with regard to the theoretical/programmed duty cycle, for different scan amplitudes θ m of 0.2, 0.4, 0.8,1.6, and 3.2 V (1 V corresponds to 7.6 deg optically in terms of angular scan amplitude)—each study being made for a certain scan frequency f s : (a) 10 Hz; (b) 50 Hz; (c) 100 Hz; (d) 200 Hz; (e) 300 Hz; (f) 500 Hz.
Fig. 4.
Fig. 4. (a) Triangular and (b1), (b2) sawtooth scanning regimes of the GS: ideal/input signals versus scanning functions/output signals of the GS. For the latter, the current positions of the galvomirror are those determined experimentally and shown in Fig. 2.
Fig. 5.
Fig. 5. GD-OCM setup [29].
Fig. 6.
Fig. 6. OCT imaging of a sample with a regular structure [frontal view of 3D OCT images shown as examples in Fig. 7(b)] with two scanning regimes: (a) triangular, (b) sawtooth with a theoretical duty cycle η t equals 75%, and (c) sawtooth with η t equals 90%. All images considered the same scan amplitude ( θ m equals 1.6 V, where 1 V stands for about 7.6 deg optically) and three different scan frequencies ( f s ): 100 Hz (a1), (b1), (c1); 300 Hz (a2), (b2), (c2); and 500 Hz (a3), (b3), (c3). For the images in column 3, the necessary overlaps are applied (Fig. 7) and the corrected images, without the previous artifacts, are shown in column 4. The dimensions of the images are 0.73 mm × 0.73 mm .
Fig. 7.
Fig. 7. (a) Principle of the overlapping of the adjacent images for distortion correction. (b) The same study as in Fig. 6, but only for the sawtooth scanning with the maximum reachable (i.e., 90%) theoretical duty cycle, with GD-OCM volumetric images taken with fast scan, with the scan frequency f s equal to 500 Hz: (b1) original and (b2) corrected image—the latter obtained by overlapping two individual adjacent images. The dimensions of the images are 0.73 mm × 0.73 mm × 0.35 mm .

Tables (1)

Tables Icon

Table 1. Effective Duty Cycle Calculated from the GD-OCM Experiments

Equations (89)

Equations on this page are rendered with MathJax. Learn more.

η t = t a / T .
η = t a / T .
ω t = 4 θ m / T
ω = θ a / ( T / 4 τ ) ,
θ ( t ) = { ω t , t [ 0 , T / 4 τ ) ω 2 τ t 2 + ω T 4 τ t + θ m ω T 2 32 τ , t [ T 4 τ , T 4 + τ ) ω ( t + T / 2 ) , t [ T / 4 + τ , 3 T / 4 τ ) ω 2 τ t 2 3 ω T 4 τ t θ m 9 ω T 2 32 τ , t [ 3 T 4 τ , 3 T 4 + τ ) ω ( t T ) , t [ 3 T / 4 + τ , T )
η = 1 2 2 τ T .
η = r / 2 2 r ,
r = θ a / θ m .
ω t = 2 θ m / η t T ,
ω = θ a η t T / 2 τ 1 = θ a η t T / 2 τ 2 = θ a + θ a η t T / 2 τ 1 τ 2 .
ω f t = 2 θ m / ( 1 η t ) T ,
ω f = θ a ( 1 η t ) T 2 τ 1 = θ a ( 1 η t ) T 2 τ 2 = ( θ a + θ a ) ( 1 η t ) T 2 τ 1 τ 2 .
θ ( t ) = { ω t , t [ 0 , η t T / 2 τ ) ω 2 τ 1 ( t η t T 2 ) 2 + θ m , t [ η t T 2 τ 1 , η t T 2 ) ω f 2 τ 1 ( t η t T 2 ) 2 + θ m , t [ η t T 2 , η t T 2 + τ 1 ) ω f ( t η t T / 2 τ 1 ) + θ a , t [ η t T / 2 + τ 1 , ( 1 η t / 2 ) T τ 2 ) ω f 2 τ 2 [ t ( 1 η t 2 ) T ] 2 θ m , t [ ( 1 η t 2 ) T τ 2 , ( 1 η t 2 ) T ) ω 2 τ 2 [ t ( 1 η t 2 ) T ] 2 θ m , t [ ( 1 η t 2 ) T , ( 1 η t 2 ) T + τ 2 ) ω ( t T ) , t [ ( 1 η t / 2 ) T + τ 2 ) .
τ 1 τ 1 = τ 2 τ 2 = 1 η t η t .
η = t a T = η t τ 1 + τ 2 T ,
η = 4 θ m ω T η t .
ω = 2 θ a Δ = 2 θ a Δ = 2 ( θ a + θ a ) Δ + Δ ,
Δ / Δ = θ a / θ a ,
Δ + Δ = T 6 τ .
θ ( t ) = { ω t , t [ 0 , Δ ) ω 2 τ ( t Δ + τ ) 2 + θ m , t [ Δ , Δ + 2 τ ) ω ( t + Δ + 2 τ ) + θ a , t [ Δ + 2 τ , T / 2 + Δ τ ) ω 4 τ [ t ( T 2 + Δ + τ ) ] 2 θ m , t [ T 2 + Δ τ , T 2 + Δ + 3 τ ) ω ( t T ) , t [ T / 2 + Δ τ , T ) .
η = Δ + Δ T = θ a + θ a ω T
η = 2 θ m 3 τ ω T = 1 2 3 τ T .
N s = 1 / ( T c · f s ) .
Δ l = 2 L τ / T ,
θ ( t ) = a t 2 + b t + c , where a , b , c = cst. ,
θ ˙ ( t ) = 2 a t + b .
θ ( t ) = ω t ,
θ ( T / 4 τ ) = θ ( T / 4 + τ ) = θ a ,
θ ( T / 4 ) = θ m ,
θ ˙ ( T / 4 τ ) = θ ˙ ( T / 4 τ ) = 0 ,
θ ˙ ( T / 4 ) = 0 .
a = ω / 2 τ ; b = ω T / 4 τ ; c = θ m ω T 2 / 32 τ ,
ω τ = 2 ( θ m θ a ) .
θ ( t ) = ω ( t + T / 2 ) .
θ ( 3 T / 4 τ ) = θ ( 3 T / 4 + τ ) = θ a ,
θ ( 3 T / 4 ) = θ m ,
θ ˙ ( 3 T / 4 τ ) = θ ˙ ( 3 T / 4 + τ ) = ω ,
θ ˙ ( 3 T / 4 ) = 0 .
a = ω / 2 τ , b = 3 ω T / 4 τ , c = θ m 9 ω T 2 / 32 τ ,
θ ( t ) = ω ( t T ) .
θ ( t ) = ω t .
θ ( η t T / 2 τ 1 ) = θ a ,
θ ( η t T / 2 ) = θ m ,
θ ˙ ( η t T / 2 τ 1 ) = 0 ,
θ ˙ ( η t T / 2 ) = 0 ,
a = ω / 2 τ 1 , b = ω η t T / 2 τ 1 , c = θ m ω η t 2 T 2 / 8 τ 1 ,
ω τ 1 = 2 ( θ m θ a ) .
θ ( η t T / 2 ) = θ m ,
θ ( η t T / 2 + τ 1 ) = θ a ,
θ ˙ ( η t T / 2 ) = 0 ,
θ ˙ ( η t T / 2 + τ 1 ) = ω f ,
a = ω f / 2 τ 1 , b = ω f η t T / 2 τ 1 , c = θ m + ω f η t 2 T 2 / 8 τ 1 ,
ω f τ 1 = 2 ( θ m θ a ) .
τ 1 τ 1 = ω f ω = η t 1 η t .
θ ( t ) = ω f ( t η t T / 2 τ 1 ) + θ a .
θ ( ( 1 η t / 2 ) T τ 2 ) = θ a ,
θ ( ( 1 η t / 2 ) T ) = θ m ,
θ ˙ ( ( 1 η t / 2 ) T τ 2 ) = ω f ,
θ ˙ ( ( 1 η t / 2 ) T ) = 0 ,
a = ω f 2 τ 2 , b = ω f ( 2 η t ) T 2 τ 2 , c = θ m ω f ( 1 η t ) T 2 2 τ 2 ,
ω f τ 2 = 2 ( θ m θ a ) .
θ ( ( 1 η t / 2 ) T + τ 2 ) = θ a ,
θ ( ( 1 η t / 2 ) T ) = θ m ,
θ ˙ ( ( ( 1 η t / 2 ) T + τ 2 ) ) = ω ,
θ ˙ ( ( 1 η t / 2 ) T ) = 0 ,
a = ω 2 τ 2 , b = ω ( 2 η t ) T 2 τ 2 , c = θ m + ω ( 1 η t / 2 ) T 2 2 τ 2 ,
ω τ 2 = 2 ( θ m θ a ) .
τ 2 τ 2 = ω ω f = 1 η t η t ,
θ ( Δ ) = θ ( Δ + 2 τ ) = θ a ,
θ ( Δ + τ ) = θ m ,
θ ˙ ( Δ ) = θ ˙ ( Δ + 2 τ ) = ω ,
θ ˙ ( Δ + τ ) = 0 .
a = ω / 2 τ , b = ω ( Δ + τ ) / τ , c = θ m ω ( Δ + τ ) 2 / 2 τ ,
θ ( t ) = ω ( t + Δ + 2 τ ) + θ a .
θ ( T / 2 + Δ τ ) = θ ( T / 2 + Δ + 3 τ ) = θ a ,
θ ( T / 2 + Δ + τ ) = θ m ,
θ ˙ ( T / 2 + Δ τ ) = θ ˙ ( T / 2 + Δ + 3 τ ) = ω ,
θ ˙ ( T / 2 + Δ + τ ) = 0 .
a = ω 4 τ , b = ω 2 τ ( T 2 + Δ + τ ) , c = ω 4 τ ( T 2 + Δ + τ ) 2 θ m ,
ω τ = θ m θ a .
Δ η = η τ Δ τ + η T Δ T ,
Δ η = ( η τ + η T ) T C ,
ε = | Δ η η | .
Δ η = T C T ( 3 2 + η ) ,
ε = ( 1 + 1.5 η ) T C f s .
Δ η = T C T ( 2 η t + η ) ,
ε = ( 1 + 2 η t η ) T C f s .
Δ η = T C T ( 5 2 + η ) ,
ε = ( 1 + 2.5 η ) T C f s .

Metrics