Abstract

We have recently developed vetted methods for obtaining quantitative infrared directional–hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance versus particle size are observed such as increased albedo for smaller particles: for most wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate and large size sample fractions: that is, 150μm. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance versus particle diameter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared specular reflectance of pressed crystal powders and mixtures

Frederic E. Volz
Appl. Opt. 22(12) 1842-1855 (1983)

Variation of Single Particle Mid-Infrared Emission Spectrum with Particle Size

G. R. Hunt and L. M. Logan
Appl. Opt. 11(1) 142-147 (1972)

References

  • View by:
  • |
  • |
  • |

  1. G. R. Hunt and R. K. Vincent, “The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes,” J. Geophys. Res. 73, 6039–6046 (1968).
    [Crossref]
  2. J. W. Salisbury and L. S. Walter, “Thermal infrared (2.5–13.5  μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces,” J. Geophys. Res. 94, 9192–9202 (1989).
    [Crossref]
  3. J. W. Salisbury and A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
    [Crossref]
  4. J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on reflectance spectra from 0.3 to 25  μm,” Icarus 125, 145–163 (1997).
    [Crossref]
  5. A. Le Bras and S. Erard, “Reflectance spectra of regolith analogs in the mid-infrared: effects of grain size,” Planet. Space Sci. 51, 281–294 (2003).
    [Crossref]
  6. B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).
  7. T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).
  8. T. J. Johnson, B. E. Bernacki, R. L. Redding, Y. Su, C. S. Brauer, T. L. Myers, and E. G. Stephan, “Intensity-value corrections for integrating sphere measurements of solids samples measured behind glass,” Appl. Spectrosc. 68, 1224–1234 (2014).
    [Crossref]
  9. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).
  10. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
  11. M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).
  12. V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
    [Crossref]
  13. J.-B. Feret and G. P. Asner, “Spectroscopic classification of tropical forest species using radiative transfer modeling,” Remote Sens. Environ. 115, 2415–2422 (2011).
  14. M. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40, 3196 (2001).
    [Crossref]
  15. T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature bacillus spores,” Chem. Phys. Lett. 403, 152–157 (2005).
    [Crossref]
  16. T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).
  17. S. J. Choquette, D. L. Duewer, L. M. Hanssen, and E. A. Early, “Standard reference material 2036 near-infrared wavelength standard,” Appl. Spectrosc. 59, 496–504 (2005).
    [Crossref]
  18. T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).
  19. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980), pp. 418–419.
  20. Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).
  21. J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100, 7465–7477 (1995).
    [Crossref]
  22. C. D. Cooper and J. F. Mustard, “Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil,” Icarus 142, 557–570 (1999).
    [Crossref]
  23. M. D. Lane, “Mid-infrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite,” J. Geophys. Res. 104, 14099–14108 (1999).
    [Crossref]
  24. J. W. Salisbury, “Mid-infrared spectroscopy: laboratory data,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters and P. A. J. Englert, eds. (Cambridge University, 1993), pp. 79–98.
  25. F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).
    [Crossref]
  26. M. P. Fuller and P. R. Griffiths, “Infrared analysis by diffuse reflectance spectroscopy,” Amer. Lab. 10, 69–80 (1978).
  27. B. Hapke, “Applications of an energy transfer model to three problems in planetary regoliths: The solid-state greenhouse, thermal beaming, and emittance spectra,” J. Geophys. Res. 101, 16833–16840 (1996).
    [Crossref]
  28. R. Prost, “The influence of the Christiansen effect on I.R. spectra of powders,” Clays Clay Min. 21, 363–368 (1973).
  29. R. K. Vincent and G. R. Hunt, “Infrared reflectance from mat surfaces,” Appl. Opt. 7, 53–59 (1968).
    [Crossref]
  30. F. A. Andersen and L. Brečević, “Infrared spectra of amorphous and crystalline calcium carbonate,” Acta Chemica Scandinavica 45, 1018–1024 (1991).
    [Crossref]
  31. M. D. Lane and P. R. Christensen, “Thermal infrared emission spectroscopy of salt minerals predicted for Mars,” Icarus 135, 528–536 (1998).
    [Crossref]
  32. H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).
  33. J. D. S. Goulden and J. W. White, “Effects of crystallinity on the infra-red absorption spectra of lactose and dried milk,” Nature 181, 266–267 (1958).
    [Crossref]
  34. H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).
  35. G. R. Hunt and L. M. Logan, “Variation of single particle mid-infrared emission spectrum with particle size,” Appl. Opt. 11, 142–147 (1972).
    [Crossref]
  36. J. E. Conel, “Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums,” J. Geophys. Res. 74, 1614–1634 (1969).
    [Crossref]
  37. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).
  38. B. Hapke, “Bidirectional reflectance spectroscopy I. Theory,” J. Geophys. Res. 86, 3039–3054 (1981).
    [Crossref]
  39. B. Hapke and E. Wells, “Bidirectional reflectance spectroscopy, II. Experiments and observations,” J. Geophys. Res. 86, 3055–3060 (1981).
    [Crossref]
  40. J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchoff’s law 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
    [Crossref]
  41. R. A. Shepherd, “Absolute measurement of diffuse and specular reflectance using an FTIR spectrometer with an integrating sphere,” SPIE 1311, 55–69 (1990).
  42. O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976).
    [Crossref]
  43. E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem. 382, 1987–1992 (2005).
    [Crossref]
  44. B. Ribeiro da Luz and J. K. Crowley, “Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0  μm),” Rem. Sens. Environ. 109, 393–405 (2007).
  45. C. E. Elvidge, “Thermal infrared reflectance of dry plant materials: 2.5–20.0  μm,” Remote Sens. Environ. 26, 265–285 (1988).
  46. J. W. Salisbury, “Preliminary measurements of leaf spectral reflectance in the 8–14  μm region,” Int. J. Remote Sens. 7, 1879–1886 (1986).
    [Crossref]
  47. J. W. Salisbury and N. M. Milton, “Thermal infrared (2.5 to 13.5  μm) directional hemispherical reflectance of leaves,” Photogramm. Eng. Remote Sens. 54, 1301–1304 (1988).
  48. M. P. Fuller and P. R. Griffiths, “Diffuse reflectance measurements by infrared Fourier transform spectrometry,” Anal. Chem. 50, 1906–1910 (1978).
    [Crossref]
  49. J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part I: single analytes,” Appl. Spectros. 47, 687–694 (1993).
  50. J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part II: durum wheat,” Appl. Spectrosc. 47, 695–701 (1993).
  51. B. Hapke and R. Nelson, “Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry,” J. Atmos. Sci. 32, 1212–1218 (1975).
    [Crossref]
  52. P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
    [Crossref]

2014 (5)

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

T. J. Johnson, B. E. Bernacki, R. L. Redding, Y. Su, C. S. Brauer, T. L. Myers, and E. G. Stephan, “Intensity-value corrections for integrating sphere measurements of solids samples measured behind glass,” Appl. Spectrosc. 68, 1224–1234 (2014).
[Crossref]

M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

2011 (3)

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
[Crossref]

J.-B. Feret and G. P. Asner, “Spectroscopic classification of tropical forest species using radiative transfer modeling,” Remote Sens. Environ. 115, 2415–2422 (2011).

2010 (1)

T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).

2009 (1)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).

2007 (1)

B. Ribeiro da Luz and J. K. Crowley, “Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0  μm),” Rem. Sens. Environ. 109, 393–405 (2007).

2005 (3)

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem. 382, 1987–1992 (2005).
[Crossref]

S. J. Choquette, D. L. Duewer, L. M. Hanssen, and E. A. Early, “Standard reference material 2036 near-infrared wavelength standard,” Appl. Spectrosc. 59, 496–504 (2005).
[Crossref]

T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature bacillus spores,” Chem. Phys. Lett. 403, 152–157 (2005).
[Crossref]

2003 (1)

A. Le Bras and S. Erard, “Reflectance spectra of regolith analogs in the mid-infrared: effects of grain size,” Planet. Space Sci. 51, 281–294 (2003).
[Crossref]

2002 (1)

B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).

2001 (1)

1999 (2)

C. D. Cooper and J. F. Mustard, “Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil,” Icarus 142, 557–570 (1999).
[Crossref]

M. D. Lane, “Mid-infrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite,” J. Geophys. Res. 104, 14099–14108 (1999).
[Crossref]

1998 (2)

M. D. Lane and P. R. Christensen, “Thermal infrared emission spectroscopy of salt minerals predicted for Mars,” Icarus 135, 528–536 (1998).
[Crossref]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

1997 (1)

J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on reflectance spectra from 0.3 to 25  μm,” Icarus 125, 145–163 (1997).
[Crossref]

1996 (1)

B. Hapke, “Applications of an energy transfer model to three problems in planetary regoliths: The solid-state greenhouse, thermal beaming, and emittance spectra,” J. Geophys. Res. 101, 16833–16840 (1996).
[Crossref]

1995 (1)

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100, 7465–7477 (1995).
[Crossref]

1994 (1)

J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchoff’s law 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[Crossref]

1993 (2)

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part I: single analytes,” Appl. Spectros. 47, 687–694 (1993).

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part II: durum wheat,” Appl. Spectrosc. 47, 695–701 (1993).

1992 (2)

P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[Crossref]

J. W. Salisbury and A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[Crossref]

1991 (1)

F. A. Andersen and L. Brečević, “Infrared spectra of amorphous and crystalline calcium carbonate,” Acta Chemica Scandinavica 45, 1018–1024 (1991).
[Crossref]

1990 (1)

R. A. Shepherd, “Absolute measurement of diffuse and specular reflectance using an FTIR spectrometer with an integrating sphere,” SPIE 1311, 55–69 (1990).

1989 (1)

J. W. Salisbury and L. S. Walter, “Thermal infrared (2.5–13.5  μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces,” J. Geophys. Res. 94, 9192–9202 (1989).
[Crossref]

1988 (2)

C. E. Elvidge, “Thermal infrared reflectance of dry plant materials: 2.5–20.0  μm,” Remote Sens. Environ. 26, 265–285 (1988).

J. W. Salisbury and N. M. Milton, “Thermal infrared (2.5 to 13.5  μm) directional hemispherical reflectance of leaves,” Photogramm. Eng. Remote Sens. 54, 1301–1304 (1988).

1986 (1)

J. W. Salisbury, “Preliminary measurements of leaf spectral reflectance in the 8–14  μm region,” Int. J. Remote Sens. 7, 1879–1886 (1986).
[Crossref]

1981 (2)

B. Hapke, “Bidirectional reflectance spectroscopy I. Theory,” J. Geophys. Res. 86, 3039–3054 (1981).
[Crossref]

B. Hapke and E. Wells, “Bidirectional reflectance spectroscopy, II. Experiments and observations,” J. Geophys. Res. 86, 3055–3060 (1981).
[Crossref]

1978 (2)

M. P. Fuller and P. R. Griffiths, “Infrared analysis by diffuse reflectance spectroscopy,” Amer. Lab. 10, 69–80 (1978).

M. P. Fuller and P. R. Griffiths, “Diffuse reflectance measurements by infrared Fourier transform spectrometry,” Anal. Chem. 50, 1906–1910 (1978).
[Crossref]

1976 (1)

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976).
[Crossref]

1975 (1)

B. Hapke and R. Nelson, “Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry,” J. Atmos. Sci. 32, 1212–1218 (1975).
[Crossref]

1973 (1)

R. Prost, “The influence of the Christiansen effect on I.R. spectra of powders,” Clays Clay Min. 21, 363–368 (1973).

1972 (1)

1969 (1)

J. E. Conel, “Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums,” J. Geophys. Res. 74, 1614–1634 (1969).
[Crossref]

1968 (2)

R. K. Vincent and G. R. Hunt, “Infrared reflectance from mat surfaces,” Appl. Opt. 7, 53–59 (1968).
[Crossref]

G. R. Hunt and R. K. Vincent, “The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes,” J. Geophys. Res. 73, 6039–6046 (1968).
[Crossref]

1965 (1)

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

1958 (1)

J. D. S. Goulden and J. W. White, “Effects of crystallinity on the infra-red absorption spectra of lactose and dried milk,” Nature 181, 266–267 (1958).
[Crossref]

1952 (1)

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).
[Crossref]

Adams, J. B.

P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[Crossref]

Adler, H. H.

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

Andersen, F. A.

F. A. Andersen and L. Brečević, “Infrared spectra of amorphous and crystalline calcium carbonate,” Acta Chemica Scandinavica 45, 1018–1024 (1991).
[Crossref]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Asner, G. P.

J.-B. Feret and G. P. Asner, “Spectroscopic classification of tropical forest species using radiative transfer modeling,” Remote Sens. Environ. 115, 2415–2422 (2011).

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).

Bekhti, N.

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

Bernacki, B. E.

Blake, T. A.

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980), pp. 418–419.

Bouterfas, M.

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

Brauer, C. S.

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

T. J. Johnson, B. E. Bernacki, R. L. Redding, Y. Su, C. S. Brauer, T. L. Myers, and E. G. Stephan, “Intensity-value corrections for integrating sphere measurements of solids samples measured behind glass,” Appl. Spectrosc. 68, 1224–1234 (2014).
[Crossref]

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

Brecevic, L.

F. A. Andersen and L. Brečević, “Infrared spectra of amorphous and crystalline calcium carbonate,” Acta Chemica Scandinavica 45, 1018–1024 (1991).
[Crossref]

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Choquette, S. J.

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Christensen, P. R.

M. D. Lane and P. R. Christensen, “Thermal infrared emission spectroscopy of salt minerals predicted for Mars,” Icarus 135, 528–536 (1998).
[Crossref]

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100, 7465–7477 (1995).
[Crossref]

Conel, J. E.

J. E. Conel, “Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums,” J. Geophys. Res. 74, 1614–1634 (1969).
[Crossref]

Cooper, B. L.

B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).

Cooper, C. D.

C. D. Cooper and J. F. Mustard, “Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil,” Icarus 142, 557–570 (1999).
[Crossref]

Crowley, J. K.

B. Ribeiro da Luz and J. K. Crowley, “Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0  μm),” Rem. Sens. Environ. 109, 393–405 (2007).

D’Aria, D. M.

J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchoff’s law 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[Crossref]

de Bruin, S.

V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
[Crossref]

Derrar, S. N.

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

Duewer, D. L.

Early, E. A.

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Elvidge, C. E.

C. E. Elvidge, “Thermal infrared reflectance of dry plant materials: 2.5–20.0  μm,” Remote Sens. Environ. 26, 265–285 (1988).

Erard, S.

A. Le Bras and S. Erard, “Reflectance spectra of regolith analogs in the mid-infrared: effects of grain size,” Planet. Space Sci. 51, 281–294 (2003).
[Crossref]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Feret, J.-B.

J.-B. Feret and G. P. Asner, “Spectroscopic classification of tropical forest species using radiative transfer modeling,” Remote Sens. Environ. 115, 2415–2422 (2011).

Forland, B. M.

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

Fuller, M. P.

M. P. Fuller and P. R. Griffiths, “Diffuse reflectance measurements by infrared Fourier transform spectrometry,” Anal. Chem. 50, 1906–1910 (1978).
[Crossref]

M. P. Fuller and P. R. Griffiths, “Infrared analysis by diffuse reflectance spectroscopy,” Amer. Lab. 10, 69–80 (1978).

Gafour, H. M.

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

Gardner, C. W.

M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).

Goulden, J. D. S.

J. D. S. Goulden and J. W. White, “Effects of crystallinity on the infra-red absorption spectra of lactose and dried milk,” Nature 181, 266–267 (1958).
[Crossref]

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Griffiths, P. R.

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part I: single analytes,” Appl. Spectros. 47, 687–694 (1993).

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part II: durum wheat,” Appl. Spectrosc. 47, 695–701 (1993).

M. P. Fuller and P. R. Griffiths, “Diffuse reflectance measurements by infrared Fourier transform spectrometry,” Anal. Chem. 50, 1906–1910 (1978).
[Crossref]

M. P. Fuller and P. R. Griffiths, “Infrared analysis by diffuse reflectance spectroscopy,” Amer. Lab. 10, 69–80 (1978).

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).

Hanssen, L. M.

Hanssen, M.

Hapke, B.

B. Hapke, “Applications of an energy transfer model to three problems in planetary regoliths: The solid-state greenhouse, thermal beaming, and emittance spectra,” J. Geophys. Res. 101, 16833–16840 (1996).
[Crossref]

B. Hapke, “Bidirectional reflectance spectroscopy I. Theory,” J. Geophys. Res. 86, 3039–3054 (1981).
[Crossref]

B. Hapke and E. Wells, “Bidirectional reflectance spectroscopy, II. Experiments and observations,” J. Geophys. Res. 86, 3055–3060 (1981).
[Crossref]

B. Hapke and R. Nelson, “Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry,” J. Atmos. Sci. 32, 1212–1218 (1975).
[Crossref]

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).

Hays, J. E.

J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on reflectance spectra from 0.3 to 25  μm,” Icarus 125, 145–163 (1997).
[Crossref]

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).

Hunt, G. R.

Johnson, P. E.

P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[Crossref]

Johnson, T. J.

T. J. Johnson, B. E. Bernacki, R. L. Redding, Y. Su, C. S. Brauer, T. L. Myers, and E. G. Stephan, “Intensity-value corrections for integrating sphere measurements of solids samples measured behind glass,” Appl. Spectrosc. 68, 1224–1234 (2014).
[Crossref]

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).

T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature bacillus spores,” Chem. Phys. Lett. 403, 152–157 (2005).
[Crossref]

Kerr, P. F.

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

Khare, B. N.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976).
[Crossref]

Killen, R. M.

B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).

Klueva, O.

M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).

Korte, E. H.

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem. 382, 1987–1992 (2005).
[Crossref]

Lane, M. D.

M. D. Lane, “Mid-infrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite,” J. Geophys. Res. 104, 14099–14108 (1999).
[Crossref]

M. D. Lane and P. R. Christensen, “Thermal infrared emission spectroscopy of salt minerals predicted for Mars,” Icarus 135, 528–536 (1998).
[Crossref]

Le Bras, A.

A. Le Bras and S. Erard, “Reflectance spectra of regolith analogs in the mid-infrared: effects of grain size,” Planet. Space Sci. 51, 281–294 (2003).
[Crossref]

Logan, L. M.

Mayr, T. R.

V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
[Crossref]

Miller, F. A.

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).
[Crossref]

Milton, N. M.

J. W. Salisbury and N. M. Milton, “Thermal infrared (2.5 to 13.5  μm) directional hemispherical reflectance of leaves,” Photogramm. Eng. Remote Sens. 54, 1301–1304 (1988).

Moersch, J. E.

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100, 7465–7477 (1995).
[Crossref]

Mulder, V. L.

V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
[Crossref]

Mustard, J. F.

C. D. Cooper and J. F. Mustard, “Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil,” Icarus 142, 557–570 (1999).
[Crossref]

J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on reflectance spectra from 0.3 to 25  μm,” Icarus 125, 145–163 (1997).
[Crossref]

Myers, T. L.

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

T. J. Johnson, B. E. Bernacki, R. L. Redding, Y. Su, C. S. Brauer, T. L. Myers, and E. G. Stephan, “Intensity-value corrections for integrating sphere measurements of solids samples measured behind glass,” Appl. Spectrosc. 68, 1224–1234 (2014).
[Crossref]

Nelson, M. P.

M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).

Nelson, R.

B. Hapke and R. Nelson, “Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry,” J. Atmos. Sci. 32, 1212–1218 (1975).
[Crossref]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Olinger, J. M.

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part I: single analytes,” Appl. Spectros. 47, 687–694 (1993).

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part II: durum wheat,” Appl. Spectrosc. 47, 695–701 (1993).

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Pollack, J. B.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976).
[Crossref]

Potter, A. E.

B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).

Prost, R.

R. Prost, “The influence of the Christiansen effect on I.R. spectra of powders,” Clays Clay Min. 21, 363–368 (1973).

Rahal, M. S.

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

Redding, R. L.

Ribeiro da Luz, B.

B. Ribeiro da Luz and J. K. Crowley, “Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0  μm),” Rem. Sens. Environ. 109, 393–405 (2007).

Richardson, R. L.

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).

Röseler, A.

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem. 382, 1987–1992 (2005).
[Crossref]

Salisbury, J. W.

B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).

J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchoff’s law 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[Crossref]

J. W. Salisbury and A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[Crossref]

J. W. Salisbury and L. S. Walter, “Thermal infrared (2.5–13.5  μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces,” J. Geophys. Res. 94, 9192–9202 (1989).
[Crossref]

J. W. Salisbury and N. M. Milton, “Thermal infrared (2.5 to 13.5  μm) directional hemispherical reflectance of leaves,” Photogramm. Eng. Remote Sens. 54, 1301–1304 (1988).

J. W. Salisbury, “Preliminary measurements of leaf spectral reflectance in the 8–14  μm region,” Int. J. Remote Sens. 7, 1879–1886 (1986).
[Crossref]

J. W. Salisbury, “Mid-infrared spectroscopy: laboratory data,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters and P. A. J. Englert, eds. (Cambridge University, 1993), pp. 79–98.

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Schaepman, M. E.

V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
[Crossref]

Sharpe, S. W.

T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature bacillus spores,” Chem. Phys. Lett. 403, 152–157 (2005).
[Crossref]

Shepherd, R. A.

R. A. Shepherd, “Absolute measurement of diffuse and specular reflectance using an FTIR spectrometer with an integrating sphere,” SPIE 1311, 55–69 (1990).

Smith, M. O.

P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[Crossref]

Solis, M. S.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Stephan, E. G.

Su, Y.

T. J. Johnson, B. E. Bernacki, R. L. Redding, Y. Su, C. S. Brauer, T. L. Myers, and E. G. Stephan, “Intensity-value corrections for integrating sphere measurements of solids samples measured behind glass,” Appl. Spectrosc. 68, 1224–1234 (2014).
[Crossref]

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

Su, Y.-F.

T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).

Szecsody, J. E.

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

Tomas, D.

M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).

Tonkyn, R. G.

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

Toon, O. B.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976).
[Crossref]

Valentine, N. B.

T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).

T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature bacillus spores,” Chem. Phys. Lett. 403, 152–157 (2005).
[Crossref]

Vincent, R. K.

R. K. Vincent and G. R. Hunt, “Infrared reflectance from mat surfaces,” Appl. Opt. 7, 53–59 (1968).
[Crossref]

G. R. Hunt and R. K. Vincent, “The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes,” J. Geophys. Res. 73, 6039–6046 (1968).
[Crossref]

Wald, A.

J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchoff’s law 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[Crossref]

J. W. Salisbury and A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[Crossref]

Walter, L. S.

J. W. Salisbury and L. S. Walter, “Thermal infrared (2.5–13.5  μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces,” J. Geophys. Res. 94, 9192–9202 (1989).
[Crossref]

Wells, E.

B. Hapke and E. Wells, “Bidirectional reflectance spectroscopy, II. Experiments and observations,” J. Geophys. Res. 86, 3055–3060 (1981).
[Crossref]

White, J. W.

J. D. S. Goulden and J. W. White, “Effects of crystallinity on the infra-red absorption spectra of lactose and dried milk,” Nature 181, 266–267 (1958).
[Crossref]

Wilkins, C. H.

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).
[Crossref]

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

Williams, S. D.

T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980), pp. 418–419.

Acta Chemica Scandinavica (1)

F. A. Andersen and L. Brečević, “Infrared spectra of amorphous and crystalline calcium carbonate,” Acta Chemica Scandinavica 45, 1018–1024 (1991).
[Crossref]

Am. Mineral. (1)

H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).

Amer. Lab. (1)

M. P. Fuller and P. R. Griffiths, “Infrared analysis by diffuse reflectance spectroscopy,” Amer. Lab. 10, 69–80 (1978).

Anal. Bioanal. Chem. (1)

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem. 382, 1987–1992 (2005).
[Crossref]

Anal. Chem. (2)

M. P. Fuller and P. R. Griffiths, “Diffuse reflectance measurements by infrared Fourier transform spectrometry,” Anal. Chem. 50, 1906–1910 (1978).
[Crossref]

F. A. Miller and C. H. Wilkins, “Infrared spectra and characteristic frequencies of inorganic ions,” Anal. Chem. 24, 1253–1294 (1952).
[Crossref]

Appl. Opt. (3)

Appl. Spectros. (1)

J. M. Olinger and P. R. Griffiths, “Effects of sample dilution and particle size/morphology on diffuse reflection spectra of carbohydrate systems in the near- and mid-infrared. Part I: single analytes,” Appl. Spectros. 47, 687–694 (1993).

Appl. Spectrosc. (3)

Chem. Phys. Lett. (1)

T. J. Johnson, N. B. Valentine, and S. W. Sharpe, “Mid-infrared versus far-infrared (THz) relative intensities of room-temperature bacillus spores,” Chem. Phys. Lett. 403, 152–157 (2005).
[Crossref]

Clays Clay Min. (1)

R. Prost, “The influence of the Christiansen effect on I.R. spectra of powders,” Clays Clay Min. 21, 363–368 (1973).

Geoderma (1)

V. L. Mulder, S. de Bruin, M. E. Schaepman, and T. R. Mayr, “The use of remote sensing in soil and terrain mapping—A review,” Geoderma 162, 1–19 (2011).
[Crossref]

Icarus (4)

J. W. Salisbury and A. Wald, “The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals,” Icarus 96, 121–128 (1992).
[Crossref]

J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on reflectance spectra from 0.3 to 25  μm,” Icarus 125, 145–163 (1997).
[Crossref]

C. D. Cooper and J. F. Mustard, “Effects of very fine particle size on reflectance spectra of smectite and palagonitic soil,” Icarus 142, 557–570 (1999).
[Crossref]

M. D. Lane and P. R. Christensen, “Thermal infrared emission spectroscopy of salt minerals predicted for Mars,” Icarus 135, 528–536 (1998).
[Crossref]

Int. J. Remote Sens. (1)

J. W. Salisbury, “Preliminary measurements of leaf spectral reflectance in the 8–14  μm region,” Int. J. Remote Sens. 7, 1879–1886 (1986).
[Crossref]

J. Atmos. Sci. (1)

B. Hapke and R. Nelson, “Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry,” J. Atmos. Sci. 32, 1212–1218 (1975).
[Crossref]

J. Geophys. Res. (12)

P. E. Johnson, M. O. Smith, and J. B. Adams, “Simple algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra,” J. Geophys. Res. 97, 2649–2657 (1992).
[Crossref]

J. E. Conel, “Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums,” J. Geophys. Res. 74, 1614–1634 (1969).
[Crossref]

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733–5748 (1976).
[Crossref]

B. Hapke, “Bidirectional reflectance spectroscopy I. Theory,” J. Geophys. Res. 86, 3039–3054 (1981).
[Crossref]

B. Hapke and E. Wells, “Bidirectional reflectance spectroscopy, II. Experiments and observations,” J. Geophys. Res. 86, 3055–3060 (1981).
[Crossref]

J. W. Salisbury, A. Wald, and D. M. D’Aria, “Thermal-infrared remote sensing and Kirchoff’s law 1. Laboratory measurements,” J. Geophys. Res. 99, 11897–11911 (1994).
[Crossref]

M. D. Lane, “Mid-infrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite,” J. Geophys. Res. 104, 14099–14108 (1999).
[Crossref]

J. E. Moersch and P. R. Christensen, “Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra,” J. Geophys. Res. 100, 7465–7477 (1995).
[Crossref]

B. Hapke, “Applications of an energy transfer model to three problems in planetary regoliths: The solid-state greenhouse, thermal beaming, and emittance spectra,” J. Geophys. Res. 101, 16833–16840 (1996).
[Crossref]

G. R. Hunt and R. K. Vincent, “The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes,” J. Geophys. Res. 73, 6039–6046 (1968).
[Crossref]

J. W. Salisbury and L. S. Walter, “Thermal infrared (2.5–13.5  μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces,” J. Geophys. Res. 94, 9192–9202 (1989).
[Crossref]

B. L. Cooper, J. W. Salisbury, R. M. Killen, and A. E. Potter, “Mid-infrared spectral features of rocks and their powders,” J. Geophys. Res. 107, 1–17 (2002).

J. Mol. Imag. Dynamic. (1)

H. M. Gafour, M. Bouterfas, N. Bekhti, S. N. Derrar, and M. S. Rahal, “Harmonic dynamics of α-D-lactose in the crystalline state,” J. Mol. Imag. Dynamic. 1, 1000102 (2011).

Nature (1)

J. D. S. Goulden and J. W. White, “Effects of crystallinity on the infra-red absorption spectra of lactose and dried milk,” Nature 181, 266–267 (1958).
[Crossref]

Photogramm. Eng. Remote Sens. (1)

J. W. Salisbury and N. M. Milton, “Thermal infrared (2.5 to 13.5  μm) directional hemispherical reflectance of leaves,” Photogramm. Eng. Remote Sens. 54, 1301–1304 (1988).

Planet. Space Sci. (1)

A. Le Bras and S. Erard, “Reflectance spectra of regolith analogs in the mid-infrared: effects of grain size,” Planet. Space Sci. 51, 281–294 (2003).
[Crossref]

Proc. SPIE (4)

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L. Myers, C. S. Brauer, and Y. Su, “Quantitative total and diffuse reflectance laboratory measurements for remote, standoff, and point sensing,” Proc. SPIE 9073, 907303 (2014).

T. L. Myers, C. S. Brauer, Y. Su, T. A. Blake, T. J. Johnson, and R. L. Richardson, “The influence of particle size on infrared reflectance spectra,” Proc. SPIE 9088, 908809 (2014).

M. P. Nelson, C. W. Gardner, O. Klueva, and D. Tomas, “Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical and narcotic residues,” Proc. SPIE 9073, 90730O (2014).

Y. Su, T. L. Myers, C. S. Brauer, T. A. Blake, B. M. Forland, J. E. Szecsody, and T. J. Johnson, “Infrared reflectance spectra: effects of particle size, provenance and preparation,” Proc. SPIE 9253, 925304 (2014).

Rem. Sens. Environ. (2)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The Aster spectral library version 2.0,” Rem. Sens. Environ. 113, 711–715 (2009).

B. Ribeiro da Luz and J. K. Crowley, “Spectral reflectance and emissivity features of broad leaf plants: prospects for remote sensing in the thermal infrared (8.0–14.0  μm),” Rem. Sens. Environ. 109, 393–405 (2007).

Remote Sens. Environ. (3)

C. E. Elvidge, “Thermal infrared reflectance of dry plant materials: 2.5–20.0  μm,” Remote Sens. Environ. 26, 265–285 (1988).

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. S. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).

J.-B. Feret and G. P. Asner, “Spectroscopic classification of tropical forest species using radiative transfer modeling,” Remote Sens. Environ. 115, 2415–2422 (2011).

SPIE (1)

R. A. Shepherd, “Absolute measurement of diffuse and specular reflectance using an FTIR spectrometer with an integrating sphere,” SPIE 1311, 55–69 (1990).

Vib. Spec. (1)

T. J. Johnson, S. D. Williams, N. B. Valentine, and Y.-F. Su, “The hydration number n of calcium dipicolinate trihydrate, CaDP·nH2O, and its effect on the IR spectra of sporulated Bacillus bacteria,” Vib. Spec. 53, 28–33 (2010).

Other (3)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon, 1980), pp. 418–419.

J. W. Salisbury, “Mid-infrared spectroscopy: laboratory data,” in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters and P. A. J. Englert, eds. (Cambridge University, 1993), pp. 79–98.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Photomicrograph images of NaNO 3 [see Ref. 18] for the first three particle size fractions: 0–45, 45–90, and 90–180 μm. Red scale bar at lower right corner is 500 μm for all images.

Fig. 2.
Fig. 2.

Hemispherical reflectance spectra for ground and sieved samples of ammonium sulfate for all six grain sizes from 11000 5000 cm 1 for the VNIR data and from 6500 4000 cm 1 for the IR data. Corresponding size fractions for the VNIR and IR are plotted in the same color.

Fig. 3.
Fig. 3.

Hemispherical (total) IR reflectance spectra from 6000 1500 cm 1 for ground and sieved samples of ammonium sulfate for all six grain sizes.

Fig. 4.
Fig. 4.

Hemispherical (total) IR reflectance spectra from 1600 600 cm 1 for ground and sieved samples of ammonium sulfate for all six grain sizes.

Fig. 5.
Fig. 5.

Hemispherical IR reflectance spectra from 3000 1000 cm 1 for all seven grain sizes of ground and sieved CaCO 3 .

Fig. 6.
Fig. 6.

Hemispherical (total) IR reflectance spectra from 1000 600 cm 1 for ground and sieved samples of calcium carbonate for five grain sizes. Each spectrum (except for the purple trace) is vertically offset by 5% increments for clarity.

Fig. 7.
Fig. 7.

Hemispherical (total) IR reflectance spectra for ground and sieved samples of sodium sulfate for three grain sizes from 6000 1400 cm 1 . The other 10 particle sizes are omitted for clarity, but similar trends are observed.

Fig. 8.
Fig. 8.

Hemispherical (total) IR reflectance spectra from 1600 600 cm 1 for ground and sieved samples of sodium sulfate for all 13 grain sizes.

Fig. 9.
Fig. 9.

Hemispherical (total) IR reflectance spectra from 800 600 cm 1 for ground and sieved samples of sodium sulfate for all 13 grain sizes.

Fig. 10.
Fig. 10.

Hemispherical (total) IR reflectance spectra for ground and sieved samples of lactose for all five grain sizes from 7000 600 cm 1 .

Fig. 11.
Fig. 11.

Hemispherical (total) IR reflectance spectra for ground and sieved samples of lactose for all five grain sizes from 1400 600 cm 1 . Gray box shows the small upward-going peaks assigned as reststrahlen features.

Fig. 12.
Fig. 12.

Hemispherical IR reflectance spectra (bottom plot) for ground and sieved samples of ammonium sulfate for three grain sizes from 3500 600 cm 1 : 0–45 μm (black trace); 45–90 μm (red trace); and > 500 μm (purple trace). The middle frame shows the calculated n (blue trace) and k (green trace) values [42]. The black dotted vertical lines represent the locations of the reststrahlen bands in the reflectance spectrum. Top frame shows transmission spectrum after subtracting spectrum of pure KBr.

Fig. 13.
Fig. 13.

Plots of (a) the reflectivities versus particle diameter for all ground and sieved samples of sodium sulfate and (b) the hemispherical IR reflectance spectra. Dotted lines in the bottom plot correspond to the regions used in the top plot. Fits (lines) to the experimental data are also shown in the top plot.

Fig. 14.
Fig. 14.

Plot of the single-scattering albedo versus mean diameter for Na 2 SO 4 .

Tables (4)

Tables Icon

Table 1. Average ( NH 4 ) 2 SO 4 Particle Size Via Optical Microscopy

Tables Icon

Table 2. Average CaCO 3 Particle Size Via Optical Microscopy

Tables Icon

Table 3. Average Na 2 SO 4 Particle Size Via Optical Microscopy

Tables Icon

Table 4. Average Lactose Particle Size Via Optical Microscopy

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = 1 ( a + b d ) ,
R = R 0 + α e ( d / b ) ,
ω S + ( 1 S ) e α d ,
R = 1 1 ω 1 + 2 cos ( i ) 1 ω

Metrics