Abstract

Non-local means (NLM) filter is one of the state-of-the-art denoising filters. It exploits the presence of similar features in an image and averages those similar features to remove noise. However, a conventional NLM filter shows somewhat inferior performance of noise reduction around edges, suffering from low efficiency of collecting similar features to be averaged. In order to overcome this phenomenon, we propose a NLM filter with double Gaussian anisotropic kernels as a substitute for the conventional homogeneous kernel to effectively remove noise from OCT images corrupted by speckle noise. The proposed filter was evaluated by comparing with various denoising filters such as conventional NLM filter, median filter, bilateral filter, and Wiener filter. The fingertip OCT images, which were processed with the different denoising filters, indicated that the proposed NLM filter provides superior denoising performance, among the filters in terms of the contrast-to-noise ratio (CNR), the equivalent number of looks (ENL), and the speckle suppression index (SSI). A human retina OCT image was also used to compare and show the performances of noise reduction among different filters. In addition, the denoising performance with the proposed NLM filter was also investigated in the synthetic images for fair comparison among the filters by calculating the peak signal-to-noise ratio (PSNR). The proposed NLM filter outperformed the conventional NLM filter as well as the other filters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle noise reduction in digital speckle pattern interferometric fringes by nonlocal means and its related adaptive kernel-based methods

Yassine Tounsi, Manoj Kumar, Abdelkrim Nassim, and Fernando Mendoza-Santoyo
Appl. Opt. 57(27) 7681-7690 (2018)

Nonlocal means image denoising using orthogonal moments

Ahlad Kumar
Appl. Opt. 54(27) 8156-8165 (2015)

Speckle denoising in digital holography by nonlocal means filtering

Amitai Uzan, Yair Rivenson, and Adrian Stern
Appl. Opt. 52(1) A195-A200 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription