Abstract

The systematic errors introduced by triggering a USB spectrometer for laser-induced breakdown spectroscopy equivalence ratio measurements are studied. We analyze the temporal behavior of laser-induced plasma in a nonreacting methane/air mixture and investigate the influence of the dynamics on equivalence ratio measurements with gated and ungated detection. For use of gated detectors, optimal delay times were found to be between 500 and 2000 ns to allow effective suppression of interferences while maintaining sufficient signal-to-noise levels. Good precision was found for short and long exposure time intervals when an intensified CCD camera was employed. On the other hand, the jitter of an externally triggered ungated spectrometer leads to high uncertainties. Running the ungated spectrometer freely, the single-shot uncertainty can be reduced by more than 1 order of magnitude.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector

Kemal E. Eseller, Fang Y. Yueh, and Jagdish P. Singh
Appl. Opt. 47(31) G144-G148 (2008)

Instantaneous one-dimensional equivalence ratio measurements in methane/air mixtures using femtosecond laser-induced plasma spectroscopy

Dayuan Zhang, Qiang Gao, Bo Li, Zhifeng Zhu, and Zhongshan Li
Opt. Express 27(3) 2159-2169 (2019)

Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy

Jorge E. Carranza, Emily Gibb, Ben W. Smith, David W. Hahn, and James D. Winefordner
Appl. Opt. 42(30) 6016-6021 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription