Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiscale contrast direction adaptive image fusion technique for MWIR-LWIR image pairs and LWIR multifocus infrared images

Not Accessible

Your library or personal account may give you access

Abstract

Infrared (IR) cameras are widely used in the latest surveillance systems because spectral characteristics of objects provide valuable information for object detection and identification. To assist the surveillance system operator and automatic image processing tasks, fusing images in the IR band was performed as a solution to increase situational awareness and different fusion techniques were developed for this purpose. Proposed techniques are generally developed for specific scenarios because image content may vary dramatically depending on the spectral range, the optical properties of the cameras, the spectral characteristics of the scene, and the spatial resolution of the interested targets in the scene. In this study, a general purpose IR image fusion technique that is suitable for real-time applications is proposed. The proposed technique can support different scenarios by applying a multiscale detail detection and can be applied to images captured from different spectral regions of the spectrum by adaptively adjusting the contrast direction through cross-checking between the source images. The feasibility of the proposed algorithm is demonstrated on registered multispectral [mid-wave IR (MWIR), long-wave IR (LWIR)] and LWIR multifocus images. Fusion results are presented and the performance of the proposed technique is compared with the baseline fusion methods through objective and subjective tests. The technique outperforms baseline methods in the subjective tests and provide promising results in objective quality metrics with an acceptable computational load. In addition, the proposed technique preserves object details and prevents undesired artifacts better than the baseline techniques in the image fusion scenario that contains four source images.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Infrared and visible image fusion using multiscale directional nonlocal means filter

Xiang Yan, Hanlin Qin, Jia Li, Huixin Zhou, Jing-guo Zong, and Qingjie Zeng
Appl. Opt. 54(13) 4299-4308 (2015)

Multifocus color image sequence fusion based on mean shift segmentation

Xingxing Hao, Hui Zhao, and Jing Liu
Appl. Opt. 54(30) 8982-8989 (2015)

Multifocus image fusion using superpixel segmentation and superpixel-based mean filtering

Junwei Duan, Long Chen, and C. L. Philip Chen
Appl. Opt. 55(36) 10352-10362 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved