Abstract

A high-efficiency lidar receiver architecture that emphasizes boosting the receiver collection efficiency of resonance-fluorescence and Doppler lidars has opened up new avenues of study for the mesosphere and lower thermosphere-extended (MLT-X) at sites in Boulder, Colorado, USA, and Cerro Pachón, Chile. Described in this work are in-depth considerations in the design, construction, and alignment of Na Doppler lidar receivers that have yielded signal levels typically 5–10 times higher per power-aperture product than any demonstrated in the literature, to these authors’ knowledge, making studies of fine-scale MLT turbulence and tenuous thermospheric layers in Na possible with temperature and vertical wind capability for the first time. A lowering of the detection threshold by higher receiver collection efficiency at Cerro Pachón has enabled this Na Doppler lidar to extend its measurement range far higher into the thermosphere, to regions with Na density less than 3cm3. With renewed interest in the MLT-X region prompted by recent lidar discoveries of Fe in the thermosphere reaching 170 km at McMurdo, Antarctica, the receiver optimizations we have made now enable addressing an important need in the community. In addition, the higher spatial and temporal resolutions afforded by high signal-to-noise ratio, down to resolutions of 20s and 20m, promise to make the first direct measurements of eddy flux in the mesopause region possible. Results from deployment of optimized receivers at the Table Mountain Lidar Observatory in Boulder, the Andes Lidar Observatory at Cerro Pachón, and the Arecibo Observatory in Puerto Rico are presented to demonstrate the power and portability of our methods that are readily applicable to other lidar varieties, including, but not limited to, the newly developed Fe Doppler lidar and recently upgraded K Doppler lidar.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a solid-state sodium Doppler lidar using an all-fiber-coupled injection seeding unit for simultaneous temperature and wind measurements in the mesopause region

Yuan Xia, LiFang Du, XueWu Cheng, FaQuan Li, JiHong Wang, ZeLong Wang, Yong Yang, Xin Lin, YuChang Xun, ShunSheng Gong, and GuoTao Yang
Opt. Express 25(5) 5264-5278 (2017)

Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles

Xinzhao Chu, Weilin Pan, George C. Papen, Chester S. Gardner, and Jerry A. Gelbwachs
Appl. Opt. 41(21) 4400-4410 (2002)

References

  • View by:
  • |
  • |
  • |

  1. X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).
  2. X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.
  3. J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).
  4. T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.
  5. J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).
  6. X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
    [Crossref]
  7. X. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.
  8. W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).
  9. C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).
  10. C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
    [Crossref]
  11. T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
    [Crossref]
  12. W. Pan and C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564 (2003).
    [Crossref]
  13. T. D. Kawahara, C. S. Gardner, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109, D12103 (2004).
    [Crossref]
  14. F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
    [Crossref]
  15. C. Fricke-Begemann and J. Höffner, “Temperature tides and waves near the mesopause from lidar observations at two latitudes,” J. Geophys. Res. 110, D19103 (2005).
    [Crossref]
  16. J. S. Friedman and X. Chu, “Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35°N, 66.75°W): seasonal variations,” J. Geophys. Res. 112, D14107 (2007).
    [Crossref]
  17. X. Chu, C. S. Gardner, and S. J. Franke, “Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35°N),” J. Geophys. Res. 110, D09S03 (2005).
    [Crossref]
  18. C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
    [Crossref]
  19. W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
    [Crossref]
  20. National Sceince Foundation, CEDAR: The New Dimension: Strategic Vision for the National Science Foundation Program on Coupling, Energetics and Dynamics of Atmospheric Regions (National Science Foundation, 2011).
  21. National Research Council, Solar and Space Physics: A Science for a Technological Society, (The National Academies, 2013).
  22. C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
    [Crossref]
  23. C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
    [Crossref]
  24. X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).
  25. W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
    [Crossref]
  26. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
    [Crossref]
  27. W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
    [Crossref]
  28. C. S. Gardner and A. Z. Liu, “Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars,” J. Geophys. Res. Atmos. 119, 10583–10603 (2014).
    [Crossref]
  29. OASIS, “Exploring the interaction of Earth’s atmosphere with space,” , 2014, available at http://rsss.csl.illinois.edu/workshop .
  30. G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
    [Crossref]
  31. B. Welsh and C. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
    [Crossref]
  32. P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
    [Crossref]
  33. P. Milonni, R. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998).
  34. P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
    [Crossref]
  35. M. P. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41, 4975–4987 (2002).
    [Crossref]
  36. M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
    [Crossref]
  37. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
    [Crossref]
  38. J. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
    [Crossref]
  39. B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
    [Crossref]
  40. R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421–1424 (1997).
    [Crossref]
  41. F. Chéreau, M. Gates, B. Marinov, A. Wolf, T. Reaves, G. Chéreau, G. Zotti, F. Majerech, J. Müller, M. Cardinot, H. Lambermont, B. Gerdes, and K. AlAjaji, “Stellarium,” 2014, http://www.stellarium.org/ .
  42. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [Crossref]
  43. J. Höffner and J. S. Friedman, “The mesospheric metal layer topside: examples of simultaneous metal observations,” J. Atmos. Sol. Terr. Phys. 67, 1226–1237 (2005).
  44. X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).
  45. X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).
  46. X. Chu and W. Huang, “Fe Doppler-free spectroscopy and optical heterodyne detection for accurate frequency control of Fe-resonance Doppler lidar,” Proc. ILRC 25, 969–972 (2010).
  47. T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 35, L15831 (2009).

2014 (2)

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. S. Gardner and A. Z. Liu, “Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars,” J. Geophys. Res. Atmos. 119, 10583–10603 (2014).
[Crossref]

2013 (4)

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

2012 (2)

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

2011 (2)

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

2010 (2)

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

X. Chu and W. Huang, “Fe Doppler-free spectroscopy and optical heterodyne detection for accurate frequency control of Fe-resonance Doppler lidar,” Proc. ILRC 25, 969–972 (2010).

2009 (4)

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 35, L15831 (2009).

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

2008 (2)

X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

2007 (2)

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).

J. S. Friedman and X. Chu, “Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35°N, 66.75°W): seasonal variations,” J. Geophys. Res. 112, D14107 (2007).
[Crossref]

2005 (4)

X. Chu, C. S. Gardner, and S. J. Franke, “Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35°N),” J. Geophys. Res. 110, D09S03 (2005).
[Crossref]

C. Fricke-Begemann and J. Höffner, “Temperature tides and waves near the mesopause from lidar observations at two latitudes,” J. Geophys. Res. 110, D19103 (2005).
[Crossref]

J. Höffner and J. S. Friedman, “The mesospheric metal layer topside: examples of simultaneous metal observations,” J. Atmos. Sol. Terr. Phys. 67, 1226–1237 (2005).

B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
[Crossref]

2004 (2)

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

T. D. Kawahara, C. S. Gardner, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109, D12103 (2004).
[Crossref]

2003 (1)

W. Pan and C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564 (2003).
[Crossref]

2002 (1)

M. P. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41, 4975–4987 (2002).
[Crossref]

1999 (1)

P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
[Crossref]

1998 (2)

J. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[Crossref]

P. Milonni, R. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998).

1997 (1)

R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421–1424 (1997).
[Crossref]

1995 (2)

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[Crossref]

M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
[Crossref]

1991 (2)

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[Crossref]

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[Crossref]

1989 (2)

B. Welsh and C. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
[Crossref]

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[Crossref]

1978 (1)

G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[Crossref]

Acott, P.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Blamont, J.

G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[Crossref]

Boechat, A. A. P.

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[Crossref]

Bos, F.

G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[Crossref]

Bristow, M. P.

M. P. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41, 4975–4987 (2002).
[Crossref]

M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
[Crossref]

Browell, E.

W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

Brum, C. G. M.

J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).

Bucholtz, A.

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[Crossref]

Bundy, D. H.

M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
[Crossref]

Chanin, M.

G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[Crossref]

Chen, C.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Chen, J. S.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Cheng, X.

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

Cheng, X. W.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Chu, X.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

X. Chu and W. Huang, “Fe Doppler-free spectroscopy and optical heterodyne detection for accurate frequency control of Fe-resonance Doppler lidar,” Proc. ILRC 25, 969–972 (2010).

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).

J. S. Friedman and X. Chu, “Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35°N, 66.75°W): seasonal variations,” J. Geophys. Res. 112, D14107 (2007).
[Crossref]

X. Chu, C. S. Gardner, and S. J. Franke, “Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35°N),” J. Geophys. Res. 110, D09S03 (2005).
[Crossref]

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.

X. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.

Collins, R. L.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Ding, Z. H.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Dou, X. K.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Ejiri, M.

T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.

Espy, P. J.

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

Fearn, H.

P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
[Crossref]

Fong, W.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Franke, S. J.

X. Chu, C. S. Gardner, and S. J. Franke, “Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35°N),” J. Geophys. Res. 110, D09S03 (2005).
[Crossref]

Fricke-Begemann, C.

C. Fricke-Begemann and J. Höffner, “Temperature tides and waves near the mesopause from lidar observations at two latitudes,” J. Geophys. Res. 110, D19103 (2005).
[Crossref]

Friedman, J. S.

J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).

J. S. Friedman and X. Chu, “Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35°N, 66.75°W): seasonal variations,” J. Geophys. Res. 112, D14107 (2007).
[Crossref]

J. Höffner and J. S. Friedman, “The mesospheric metal layer topside: examples of simultaneous metal observations,” J. Atmos. Sol. Terr. Phys. 67, 1226–1237 (2005).

Fugate, R.

P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
[Crossref]

P. Milonni, R. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998).

Fuller-Rowell, T.

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Fuller-Rowell, T. J.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

Gao, Q.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Gardner, C.

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

B. Welsh and C. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
[Crossref]

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Gardner, C. S.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. S. Gardner and A. Z. Liu, “Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars,” J. Geophys. Res. Atmos. 119, 10583–10603 (2014).
[Crossref]

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).

X. Chu, C. S. Gardner, and S. J. Franke, “Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35°N),” J. Geophys. Res. 110, D09S03 (2005).
[Crossref]

T. D. Kawahara, C. S. Gardner, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109, D12103 (2004).
[Crossref]

W. Pan and C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564 (2003).
[Crossref]

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[Crossref]

Gong, S.

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

Grant, W.

W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

Hagan, M. E.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Hall, D. R.

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[Crossref]

Hardesty, R. M.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

Harrell, S. D.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

Hickson, P.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 35, L15831 (2009).

Höffner, J.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

C. Fricke-Begemann and J. Höffner, “Temperature tides and waves near the mesopause from lidar observations at two latitudes,” J. Geophys. Res. 110, D19103 (2005).
[Crossref]

J. Höffner and J. S. Friedman, “The mesospheric metal layer topside: examples of simultaneous metal observations,” J. Atmos. Sol. Terr. Phys. 67, 1226–1237 (2005).

Huang, W.

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu and W. Huang, “Fe Doppler-free spectroscopy and optical heterodyne detection for accurate frequency control of Fe-resonance Doppler lidar,” Proc. ILRC 25, 969–972 (2010).

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Jones, J. D.

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[Crossref]

Kaifler, B.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

Kawahara, T.

T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.

Kawahara, T. D.

T. D. Kawahara, C. S. Gardner, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109, D12103 (2004).
[Crossref]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Krueger, D.

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

Krueger, D. A.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Lei, J.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Li, T.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Liu, A. Z.

C. S. Gardner and A. Z. Liu, “Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars,” J. Geophys. Res. Atmos. 119, 10583–10603 (2014).
[Crossref]

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).

Liu, B.

B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
[Crossref]

Liu, H.-L.

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Lu, X.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Lübken, F.-J.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

McDonald, A.

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

McDonald, A. J.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

McKay, J.

J. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[Crossref]

Megie, G.

G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[Crossref]

Menzies, R.

W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

Milonni, P.

P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
[Crossref]

P. Milonni, R. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998).

Morris, R. J.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

Nakamura, T.

T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.

Nomura, A.

T. D. Kawahara, C. S. Gardner, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109, D12103 (2004).
[Crossref]

Nott, G. J.

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

Pan, W.

W. Pan and C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564 (2003).
[Crossref]

Papen, G. C.

X. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.

Pfrommer, T.

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 35, L15831 (2009).

Reising, S.

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

Roberts, B.

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Roberts, B. R.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

Sassen, K.

W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

Schmidt, H.

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

She, C. Y.

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

She, C.-Y.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 35, L15831 (2009).

W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

Smith, J. a.

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

Song, S.

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

Su, D.

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[Crossref]

Tan, B.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

Tang, W. W.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Telle, J.

P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
[Crossref]

P. Milonni, R. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998).

Thayer, J. P.

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).

Tsuda, T.

T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.

Vadas, S.

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Vadas, S. L.

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

Vance, J. D.

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Viehl, T. P.

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

von der Gathen, P.

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[Crossref]

Wang, J.

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

Wang, Z.

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

Wei, K.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Welsh, B.

B. Welsh and C. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
[Crossref]

Wiig, J.

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

Williams, B. P.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Wright, A. G.

M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
[Crossref]

Wuerker, R.

R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421–1424 (1997).
[Crossref]

Xue, X. H.

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

Yamashita, C.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

Yang, G.

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

Yang, Y.

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

Yi, F.

B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
[Crossref]

Yu, C. M.

B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
[Crossref]

Yu, Z.

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Yuan, T.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

Yue, J.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

Appl. Opt. (7)

B. Welsh and C. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4153 (1989).
[Crossref]

M. P. Bristow, “Suppression of afterpulsing in photomultipliers by gating the photocathode,” Appl. Opt. 41, 4975–4987 (2002).
[Crossref]

M. P. Bristow, D. H. Bundy, and A. G. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995).
[Crossref]

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[Crossref]

J. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
[Crossref]

B. Liu, F. Yi, and C. M. Yu, “Methods for optical adjustment in lidar systems,” Appl. Opt. 44, 1480–1484 (2005).
[Crossref]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[Crossref]

Geophys. Res. Lett. (5)

T. Pfrommer, P. Hickson, and C.-Y. She, “A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies,” Geophys. Res. Lett. 35, L15831 (2009).

C. Y. She, T. Li, R. L. Collins, T. Yuan, B. P. Williams, T. D. Kawahara, J. D. Vance, P. Acott, D. A. Krueger, H.-L. Liu, and M. E. Hagan, “Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41°N, 105°W): continuous multi-day temperature and wind lidar observations,” Geophys. Res. Lett. 31, L24111 (2004).
[Crossref]

X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).

J. Wang, Y. Yang, X. Cheng, G. Yang, S. Song, and S. Gong, “Double sodium layers observation over Beijing, China,” Geophys. Res. Lett. 39, L15801 (2012).

F.-J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011).
[Crossref]

J. Atmos. Sol. Terr. Phys. (2)

J. S. Friedman, X. Chu, C. G. M. Brum, and X. Lu, “Observation of a thermospheric descending layer of neutral K over Arecibo,” J. Atmos. Sol. Terr. Phys. 104, 253–259 (2013).

J. Höffner and J. S. Friedman, “The mesospheric metal layer topside: examples of simultaneous metal observations,” J. Atmos. Sol. Terr. Phys. 67, 1226–1237 (2005).

J. Geophys. Res. (10)

X. H. Xue, X. K. Dou, J. Lei, J. S. Chen, Z. H. Ding, T. Li, Q. Gao, W. W. Tang, X. W. Cheng, and K. Wei, “Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: case studies,” J. Geophys. Res. 118, 2409–2418 (2013).
[Crossref]

C. Fricke-Begemann and J. Höffner, “Temperature tides and waves near the mesopause from lidar observations at two latitudes,” J. Geophys. Res. 110, D19103 (2005).
[Crossref]

J. S. Friedman and X. Chu, “Nocturnal temperature structure in the mesopause region over the Arecibo Observatory (18.35°N, 66.75°W): seasonal variations,” J. Geophys. Res. 112, D14107 (2007).
[Crossref]

X. Chu, C. S. Gardner, and S. J. Franke, “Nocturnal thermal structure of the mesosphere and lower thermosphere region at Maui, Hawaii (20.7°N), and Starfire Optical Range, New Mexico (35°N),” J. Geophys. Res. 110, D09S03 (2005).
[Crossref]

T. Yuan, H. Schmidt, C. Y. She, D. Krueger, and S. Reising, “Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W),” J. Geophys. Res. 113, D20103 (2008).
[Crossref]

W. Pan and C. S. Gardner, “Seasonal variations of the atmospheric temperature structure at South Pole,” J. Geophys. Res. 108, 4564 (2003).
[Crossref]

T. D. Kawahara, C. S. Gardner, and A. Nomura, “Observed temperature structure of the atmosphere above Syowa Station, Antarctica (69°S, 39°E),” J. Geophys. Res. 109, D12103 (2004).
[Crossref]

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).

C. Yamashita, X. Chu, H.-L. Liu, P. J. Espy, G. J. Nott, and W. Huang, “Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica,” J. Geophys. Res. 114, D12101 (2009).
[Crossref]

P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991).
[Crossref]

J. Geophys. Res. Atmos. (4)

W. Huang, X. Chu, C. S. Gardner, Z. Wang, W. Fong, J. a. Smith, and B. R. Roberts, “Simultaneous, common-volume lidar observations and theoretical studies of correlations among Fe/Na layers and temperatures in the mesosphere and lower thermosphere at Boulder Table Mountain (40°N, 105°W), Colorado,” J. Geophys. Res. Atmos. 118, 8748–8759 (2013).
[Crossref]

C. S. Gardner and A. Z. Liu, “Measuring eddy heat, constituent, and momentum fluxes with high-resolution Na and Fe Doppler lidars,” J. Geophys. Res. Atmos. 119, 10583–10603 (2014).
[Crossref]

C. Chen, X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu, “Inertia-gravity waves in Antarctica: a case study with simultaneous lidar and radar measurements at McMurdo/Scott Base (77.8°S, 166.7°E),” J. Geophys. Res. Atmos. 118, 2794–2808 (2013).
[Crossref]

W. Fong, X. Lu, X. Chu, T. J. Fuller-Rowell, Z. Yu, B. R. Roberts, C. Chen, C. S. Gardner, and A. J. McDonald, “Winter temperature tides from 30 to 110  km at McMurdo (77.8°S, 166.7°E), Antarctica: lidar observations and comparisons with WAM,” J. Geophys. Res. Atmos. 119, 2846–2863 (2014).
[Crossref]

J. Opt. Soc. Am. A (2)

P. Milonni, R. Fugate, and J. Telle, “Analysis of measured photon returns from sodium beacons,” J. Opt. Soc. Am. A 15, 217–233 (1998).

P. Milonni, H. Fearn, J. Telle, and R. Fugate, “Theory of continuous-wave excitation of the sodium beacon,” J. Opt. Soc. Am. A 16, 2555–2566 (1999).
[Crossref]

Opt. Eng. (1)

R. Wuerker, “Bistatic liquid mirror telescope lidar alignment,” Opt. Eng. 36, 1421–1424 (1997).
[Crossref]

Opt. Lett. (2)

W. Huang, X. Chu, B. P. Williams, S. D. Harrell, J. Wiig, and C.-Y. She, “Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,” Opt. Lett. 34, 199–201 (2009).
[Crossref]

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C.-Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50  km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34, 1552–1554 (2009).
[Crossref]

Planet. Space Sci. (1)

G. Megie, F. Bos, J. Blamont, and M. Chanin, “Simultaneous nighttime lidar measurements of atmospheric sodium and potassium,” Planet. Space Sci. 26, 27–35 (1978).
[Crossref]

Proc. IEEE (1)

C. S. Gardner, “Sodium resonance fluorescence lidar applications in atmospheric science and astronomy,” Proc. IEEE 77, 408–418 (1989).
[Crossref]

Proc. ILRC (4)

X. Chu, Z. Yu, C. Chen, W. Fong, W. Huang, C. Gardner, Z. Wang, B. Roberts, and J. A. Smith, “McMurdo lidar campaign: a new look into polar upper atmosphere,” Proc. ILRC 26, 1019–1022 (2012).

X. Chu, W. Huang, J. S. Friedman, and J. P. Thayer, “MRI: mobile Fe-resonance/Rayleigh/Mie Doppler lidar principle, design, and analysis,” Proc. ILRC 24, 801–804 (2008).

X. Chu, W. Huang, J. P. Thayer, Z. Wang, and J. A. Smith, “Progress in MRI Fe-resonance/Rayleigh/Mie Doppler lidar,” Proc. ILRC 25, 947–950 (2010).

X. Chu and W. Huang, “Fe Doppler-free spectroscopy and optical heterodyne detection for accurate frequency control of Fe-resonance Doppler lidar,” Proc. ILRC 25, 969–972 (2010).

Other (8)

F. Chéreau, M. Gates, B. Marinov, A. Wolf, T. Reaves, G. Chéreau, G. Zotti, F. Majerech, J. Müller, M. Cardinot, H. Lambermont, B. Gerdes, and K. AlAjaji, “Stellarium,” 2014, http://www.stellarium.org/ .

OASIS, “Exploring the interaction of Earth’s atmosphere with space,” , 2014, available at http://rsss.csl.illinois.edu/workshop .

National Sceince Foundation, CEDAR: The New Dimension: Strategic Vision for the National Science Foundation Program on Coupling, Energetics and Dynamics of Atmospheric Regions (National Science Foundation, 2011).

National Research Council, Solar and Space Physics: A Science for a Technological Society, (The National Academies, 2013).

X. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.

W. Grant, E. Browell, R. Menzies, K. Sassen, and C.-Y. She, Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

T. Tsuda, X. Chu, T. Nakamura, M. Ejiri, and T. Kawahara, “Sodium layer in the thermosphere (110–130  km) observed at Syowa Station (69.0S, 39.6E) in Antarctica,” in American Geophysical Union (AGU) Fall Meeting, San Francisco, California, 2012.

X. Chu, Z. Yu, W. Fong, C. Chen, B. Roberts, W. Huang, X. Lu, T. Fuller-Rowell, C. Gardner, A. McDonald, and S. Vadas, “LIDAR observations of thermospheric Fe layers, temperatures and gravity waves at McMurdo, Antarctica,” in Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) workshop, Boulder, Colorado, 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Lidar geometry diagram (not to scale) illustrates the geometric overlap between receiver (RX) and transmitter (TX). Rays indicating the RX field of view and TX divergence are indicated alongside each other for a zenith-pointing telescope and a nonzero transmitter-receiver separation L . A full angle divergence of 4 times the half-angle divergence θ 1 / 2 is assumed, which encompasses more than 98% of the energy in the beam. In practice, the signal from the resonance at the MLT altitude R is maximized. In this case, the axes of the transmitter beam and field-of-view intersect at the MLT, as shown.
Fig. 2.
Fig. 2. Geometric overlap functions computed using ZEMAX for a field of view (FOV) of 790 μrad and half-angle beam divergence ( θ 1 / 2 ) of 400 μrad and for three values of the different transmitter-receiver axis separations L .
Fig. 3.
Fig. 3. Beam pointing/beam steering errors are more severe for larger transmitter-receiver separations, requiring higher normalization altitudes to limit the normalization errors for larger separations.
Fig. 4.
Fig. 4. Filter resolution influences the sensitivity of the filter to diverging/converging beams, the half-angle of which is limited by the optical extent defined by the telescope and the filter diameter.
Fig. 5.
Fig. 5. Essential arrangement of the Na Faraday anomalous dispersion optical filters (FADOF) used for daytime background filtering in Na Doppler lidar. A heated Na cell in a strong magnetic field B⃗ is positioned between two Glan–Taylor polarizers. Only a narrow band of light ( 2 GHz ) near the D 2 a line of Na experiences a strong Faraday rotation effect and, subsequently, a minimum extinction from the second, crossed polarizer.
Fig. 6.
Fig. 6. Effects on fiber coupling efficiency of coma (left) and defocus (left) of the positioning error of the fiber about the focal point of the telescope.
Fig. 7.
Fig. 7. Alignment of prefiber involves use of laser plummets for coarse alignment and a camera for fine positioning. Coma like that in the left image would be evident approximately 5 mm from the optical center.
Fig. 8.
Fig. 8. Postfiber designed in ZEMAX showing parts and positions of optical elements in the system. The fiber has a 1500 μm core with 0.37 numerical aperture. Part number ACL2520-A is a Thorlabs, molded, plano–convex asphere with f = 20 mm , Ø 25 mm . Part number LA1422-A is a Thorlabs, f = 40 mm , Ø 25 mm plano–convex spherical lens. The PMT is a Hamamatsu H7421P-40 photon counting head.
Fig. 9.
Fig. 9. Lidar simulations are consistent with the raw data obtained for a Na Doppler lidar at Boulder, Colorado, and only diverge in the nearer ranges due to the reduced geometric overlap for this profile at those altitudes. We used 70% for the one-way atmospheric transmission and temperature data was obtained from NRL MSISE-00. The backscatter coefficient of air was computed from [42]. The background level is higher than normal due to the large field of view employed on this night when the PMT and interference filter were mounted directly above the primary.
Fig. 10.
Fig. 10. Turbulence features of the order of 20 s and 24 m in scale are clearly visible on the bottomside of the layer, where the density gradient is large on these nights in December 2011. Data was taken with the STAR Na Doppler lidar, which has a power-aperture product of 0.25 W m 2 .
Fig. 11.
Fig. 11. Resonance Na counts per shot (smoothed) through the whole layer for two nights of data. The power-aperture product for the STAR Na Doppler lidar on these days was approximately 0.25 W m 2 .
Fig. 12.
Fig. 12. Thermospheric Na is visible up to nearly 170 km in this smoothed range-time image obtained at Cerro Pachón, Chile, with the University of Illinois Na Doppler lidar. The density of sodium above the main layer (75–115 km) decays exponentially in the thermosphere. Lowering the detection threshold by a factor of 5, our methods have extended the measurement range an additional 50 km, to where the sodium density falls to just 2 3 cm 3 . (Figure courtesy Dr. Alan Z. Liu, Embry-Riddle Aeronautical University.)
Fig. 13.
Fig. 13. Comparisons are shown of typical profiles before and after receiver optimization has taken place. Both lidars experienced an improvement of a factor of 3–5 in signal with negligible increase in background. Since these profiles were obtained in different seasons, the signal is roughly scaled by the column abundance for each season. The vertical scale is proportional to the count rate/flux scaled by the column abundance (CA).
Fig. 14.
Fig. 14. Comparisons of data before and after receiver optimization at Arecibo Observatory’s Na resonance lidar system (photon counts per laser shot per range bin) are shown along with the corresponding column abundance for that evening. Despite a slightly lower abundance, the optimized receiver shows a factor of 4 improvement in signal. (Figure courtesy Dr. Shikha Raizada, Arecibo Observatory.)

Tables (1)

Tables Icon

Table 1. Rough Estimate of Metal Layer Saturation for Current Resonance Doppler Lidars a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

τ s = z 2 Ω Δ t L 2 σ eff N L T a = ( h c / λ ) 2 I MLT σ eff Ω = π θ 1 / 2 2 I MLT = [ P L / A ] MLT ,
r 1 / 2 L θ FOV / 2 + L / R , r 0 L θ FOV / 2 + L / R + 2 θ 1 / 2 .
S ( r ) = 2 L θ 1 / 2 ( 1 / R 1 / r ) , A = θ FOV / θ 1 / 2 G ( r ) 1 2 ( erf ( S ( r ) + A ) erf ( S ( r ) A ) ) erf ( x ) 2 π 0 x e t 2 d t .
d G ( r * ) d θ ε = 2 θ 1 / 2 π ( exp ( ( S ( r * ) + A ) 2 ) exp ( ( S ( r * ) A ) 2 ) ) .
[ A Ω ] telescope = [ A Ω ] fiber [ A Ω ] telescope ( π ( D primary / 2 ) 2 ) ( π θ FOV / 2 2 ) [ A Ω ] fiber ( π ( D core / 2 ) 2 ) ( π NA 2 ) D primary D core NA θ FOV / 2 NA 1 2 ( f / # ) ,
NA effective = ( NA 2 2 a R n 2 ) 1 / 2 ,
θ 1 / 2 = D core D filter NA .
T ( λ 0 ) = 1 λ ( θ 1 / 2 ) λ 0 λ 0 λ ( θ 1 / 2 ) f ( λ ) d λ ,
T ( λ 0 ) / T 0 = ( 1 / S 2 ) arctan ( S 2 ) S = ( θ 1 / 2 n * ) λ 0 Δ λ FWHM ,
λ = λ 0 1 ( 1 n * sin θ 1 / 2 ) 2 λ 0 ( 1 1 2 ( 1 n * ) 2 θ 1 / 2 2 ) .
[ A Ω ] filter π 2 16 n * 2 ( Δ λ FWHM λ 0 ) D filter 2 .
[ A Ω ] 2 - aperture = A 1 A 2 L 2 , when L 2 A 1 , L 2 A 2 .
D min = D primary θ FOV / 2 2 .

Metrics