Abstract

A novel (to our knowledge) hybrid plasmonic (HP) hollow waveguide is proposed for nanoscale optical confinement. The light is guided, with improved propagation characteristics, in an air slice sandwiched between metal and silicon. The optical mode in silicon is dragged toward the metal–dielectric (air) interface to make it a HP mode by optimizing the waveguide dimensions. In comparison to the hybrid mode confined in the dielectrics, the air-confined hybrid mode exhibits a smaller effective mode area Am=0.0685/μm2 and longer propagation distance Lp=142μm with a low modal propagation loss of 0.03dB/μm at optimized values of the width and height of the air slice.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  3. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
    [CrossRef]
  4. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18, 19009–19019 (2010).
    [CrossRef]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
    [CrossRef]
  7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef]
  8. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  10. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef]
  11. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
    [CrossRef]
  12. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010).
    [CrossRef]
  13. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
    [CrossRef]
  14. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
    [CrossRef]
  15. S. A. Maier, “Plasmon waveguides,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 107–129.
  16. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express 20, 11487–11495 (2012).
    [CrossRef]
  17. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
    [CrossRef]
  18. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
    [CrossRef]
  19. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011).
    [CrossRef]
  20. P. Berini, “Air gap in metal strip waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007).
    [CrossRef]
  21. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
    [CrossRef]

2012 (1)

2011 (2)

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011).
[CrossRef]

2010 (6)

2009 (3)

2008 (2)

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

2007 (1)

P. Berini, “Air gap in metal strip waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007).
[CrossRef]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

2005 (3)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Avrutsky, I.

Banks, J. M.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Berini, P.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Buchwald, W.

Charbonneau, R.

Chen, C.

Chen, X.

Collins, R. T.

Dai, D.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

Durfee, C. G.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Fan, S. H.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Flammer, P. D.

Furtak, T. E.

Gao, L.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Gordon, R.

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Guo, R.

Hainberger, R.

Han, Z.

He, S.

Hollingsworth, R. E.

Hu, F.

Im, H.

Jones, R. J.

Kobyakov, A.

Kou, Y.

Lahoud, N.

Lesuffleur, A.

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

Lindquist, N. C.

Lipson, M.

Liu, L.

Liu, Y.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, “Plasmon waveguides,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 107–129.

Mansuripur, M.

Mattiussi, G.

Min, Q.

Moloney, J. V.

Muellner, P.

Oh, S.-H.

Oulton, R. F.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Painter, O.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Preston, K.

Robinson, J. T.

Soref, R.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Tang, L.

Van, V.

Veronis, G.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, X.

Wellenzohn, M.

Wu, M.

Yang, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Ye, F.

Yin, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Zakharian, A. R.

Zhang, X.

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhou, Z.

Appl. Phys. Lett. (2)

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon plasmonic waveguide,” Appl. Phys. Lett. 97, 141106 (2010).
[CrossRef]

J. Appl. Phys. (1)

P. Berini, “Air gap in metal strip waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys. 102, 033112 (2007).
[CrossRef]

Nano Lett. (1)

X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express (12)

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
[CrossRef]

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17, 9282–9287 (2009).
[CrossRef]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
[CrossRef]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010).
[CrossRef]

M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010).
[CrossRef]

Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18, 19009–19019 (2010).
[CrossRef]

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express 18, 21013–21023 (2010).
[CrossRef]

Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011).
[CrossRef]

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express 20, 11487–11495 (2012).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Other (1)

S. A. Maier, “Plasmon waveguides,” in Plasmonics: Fundamentals and Applications (Springer, 2007), pp. 107–129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the proposed design of the HP hollow waveguide in which an air slice of height hair and width Wair is formed in silicon under the top gold layer with a thickness of 100 nm. hair and Wair are to be optimized for a long propagation length and single-mode operation.

Fig. 2.
Fig. 2.

Field distributions Ey of the fundamental TM mode of the HPW (a) for a dielectric-based waveguide and (b) for a hollow waveguide. The width and height of the dielectric/air are respectively 200 and 10 nm. The real part of the neff is 2.75 for (a), and it is 2.64 for (b). The field confinement is stronger in (b) than that in (a).

Fig. 3.
Fig. 3.

Variation in the effective mode area with the width of the air slice at an air slice height of 10 nm.

Fig. 4.
Fig. 4.

Effect of the height of the air slice on propagation length at an air slice width of wair=100nm. The values of the mode area at air slice heights of 10, 20, 30, 40, and 50 nm are, respectively, 0.0685, 0.11, 0.5/μm2, 0.61, and 0.11/μm2.

Fig. 5.
Fig. 5.

Variation of propagation length with SiO2 (dielectric) and air width at constant hair/hSiO2=10nm. Values of the effective mode area for air slice widths of 50, 100, 150, 200, and 250 nm are, respectively, 0.08, 0685, 0.11, 0.15, and 0.17/μm2.

Fig. 6.
Fig. 6.

Change in modal propagation loss of the hollow HP waveguide with the width of air slice for different heights of the air slice.

Metrics