Abstract

A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91cm1 targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N2 collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100–2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (20kHz), in situ measurements of CO concentration in a harsh flow field.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
    [CrossRef]
  2. R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published).
    [CrossRef]
  3. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
    [CrossRef]
  4. R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
    [CrossRef]
  5. A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.
  6. Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
    [CrossRef]
  7. B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  8. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58  μm,” Appl. Opt. 27, 2688–2693 (1988).
    [CrossRef]
  9. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
    [CrossRef]
  10. X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
    [CrossRef]
  11. J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3  μm,” Appl. Opt. 39, 5579–5589 (2000).
    [CrossRef]
  12. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [CrossRef]
  13. W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
    [CrossRef]
  14. P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.
  15. J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011).
    [CrossRef]
  16. G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
    [CrossRef]
  17. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007).
    [CrossRef]
  18. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
    [CrossRef]
  19. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, 2008), p. 597.
  20. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
    [CrossRef]
  21. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef]
  22. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
    [CrossRef]
  23. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
    [CrossRef]
  24. W. C. Reynolds, “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN” (Stanford University, 1986).
  25. A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009).
    [CrossRef]
  26. A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
    [CrossRef]
  27. J. M. Hartmann, L. Rosenmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000  K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
    [CrossRef]
  28. E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).
  29. D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).
  30. P. L. Varghese and R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
    [CrossRef]
  31. P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
    [CrossRef]
  32. J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
    [CrossRef]
  33. R. T. Pack, “Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence,” J. Chem. Phys. 70, 3424 (1979).
    [CrossRef]
  34. J. Hecht, Understanding Fiber Optics (Pearson/Prentice Hall, 2006), p. 790.
  35. C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

2013

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
[CrossRef]

2012

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
[CrossRef]

2011

J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[CrossRef]

2010

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

2009

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

2007

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007).
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

2006

2000

1999

1998

D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[CrossRef]

1996

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

1995

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

1992

1988

1984

J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

1981

P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

1980

P. L. Varghese and R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[CrossRef]

1979

R. T. Pack, “Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence,” J. Chem. Phys. 70, 3424 (1979).
[CrossRef]

Allen, M. G.

An, X.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Axner, O.

Baer, D. S.

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3  μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Bates, R.

D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).

Bomse, D. S.

Bonamy, J.

J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

Bonnell, L. J.

Boulet, C.

J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

Bowman, C. T.

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

Cai, S.

Capasso, F.

Carter, C.

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

Cassidy, D. T.

Caswell, A. W.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Chao, X.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

Cho, A. Y.

Connolly, J. C.

Davidson, D. F.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
[CrossRef]

D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

De Zilwa, S.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Dec, J. E.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Dibble, R. W.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Drummond, J.

A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
[CrossRef]

Edgar, B. L.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Faist, J.

Farooq, A.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009).
[CrossRef]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Garbuzov, D. Z.

Gmachl, C.

Goldenstein, C. S.

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
[CrossRef]

C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gord, J. R.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gruber, M.

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

Gulati, A.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Hanson, R.

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

Hanson, R. K.

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
[CrossRef]

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007).
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3  μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

P. L. Varghese and R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[CrossRef]

C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published).
[CrossRef]

Hartmann, J. M.

Hecht, J.

J. Hecht, Understanding Fiber Optics (Pearson/Prentice Hall, 2006), p. 790.

Hoke, J.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Hwang, W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Jahjah, M.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Jeffries, J.

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

Jeffries, J. B.

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007).
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published).
[CrossRef]

Klingbeil, A. E.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007).
[CrossRef]

Kluczynski, P.

Lewicki, R.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Li, H.

Liu, X.

Luo, C.

A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
[CrossRef]

Ma, Y.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Maiorov, M.

Mathur, T.

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

Mattison, D. W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

May, A.

A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

Namjou, K.

Nguyen, Q. V.

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Oehlschlaeger, M. A.

J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011).
[CrossRef]

Pack, R. T.

R. T. Pack, “Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence,” J. Chem. Phys. 70, 3424 (1979).
[CrossRef]

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Perrin, M. Y.

Petersen, E. L.

D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

Platt, U.

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, 2008), p. 597.

Predoi-Cross, A.

A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
[CrossRef]

Ren, W.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
[CrossRef]

Reynolds, W. C.

W. C. Reynolds, “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN” (Stanford University, 1986).

Rieker, G.

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

Rieker, G. B.

Robert, D.

J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

Röhrig, M.

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

Rosenmann, L.

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Roy, S.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Sanders, S. T.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Schauer, F.

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

Schultz, I. A.

C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

Silver, J. A.

Sinclair, P.

A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
[CrossRef]

Sivco, D. L.

Sjoberg, M.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Sonnenfroh, D. M.

Spearrin, R. M.

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
[CrossRef]

Stanton, A. C.

Steeper, R. R.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

Stefanski, P.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Stutz, J.

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, 2008), p. 597.

Sun, K.

R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published).
[CrossRef]

Sur, R.

R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published).
[CrossRef]

Taine, J.

Tarka, J.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Tittel, F. K.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Upschulte, B. L.

Vanderover, J.

J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011).
[CrossRef]

Varghese, P. L.

P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

P. L. Varghese and R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[CrossRef]

Wang, J.

Wang, W.

J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011).
[CrossRef]

Whittaker, E. A.

AIAA J.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines,” AIAA J. 45, 772–778 (2007).
[CrossRef]

Appl. Opt.

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7  micron,” Appl. Opt. 48, 6740–6753 (2009).
[CrossRef]

P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803–5815 (1999).
[CrossRef]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006).
[CrossRef]

J. M. Hartmann, L. Rosenmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of CO line broadening by H2O, N2, O2, and CO2 in the 200–3000  K temperature range,” Appl. Opt. 27, 3063–3065 (1988).
[CrossRef]

B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
[CrossRef]

D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58  μm,” Appl. Opt. 27, 2688–2693 (1988).
[CrossRef]

J. Wang, M. Maiorov, D. S. Baer, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “In situ combustion measurements of CO with diode-laser absorption near 2.3  μm,” Appl. Opt. 39, 5579–5589 (2000).
[CrossRef]

Appl. Phys. B

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7  μm,” Appl. Phys. B 107, 849–860 (2012).
[CrossRef]

J. Vanderover, W. Wang, and M. A. Oehlschlaeger, “A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy,” Appl. Phys. B 103, 959–966 (2011).
[CrossRef]

Combust. Flame

Q. V. Nguyen, B. L. Edgar, R. W. Dibble, and A. Gulati, “Experimental and numerical comparison of extractive and in situ laser measurements of non-equilibrium carbon monoxide in lean-premixed natural gas combustion,” Combust. Flame 100, 395–406 (1995).
[CrossRef]

Int. J. Thermophys.

D. F. Davidson, E. L. Petersen, R. K. Hanson, and R. Bates, “Shock tube measurements of the equation of state of argon,” Int. J. Thermophys. 19, 1585–1594 (1998).

J. Chem. Phys.

R. T. Pack, “Pressure broadening of the dipole and Raman lines of CO2 by He and Ar. Temperature dependence,” J. Chem. Phys. 70, 3424 (1979).
[CrossRef]

J. Mol. Spectrosc.

A. Predoi-Cross, C. Luo, P. Sinclair, J. Drummond, and A. May, “Line broadening and the temperature exponent of the fundamental band in CO-N2 mixtures,” J. Mol. Spectrosc. 198, 291–303 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

P. L. Varghese and R. K. Hanson, “Tunable infrared diode laser measurements of line strengths and collision widths of 12C16O at room temperature,” J. Quant. Spectrosc. Radiat. Transfer 24, 479–489 (1980).
[CrossRef]

P. L. Varghese and R. K. Hanson, “Collision width measurements of CO in combustion gases using a tunable diode laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339–347 (1981).
[CrossRef]

J. Bonamy, D. Robert, and C. Boulet, “Simplified models for the temperature dependence of linewidths at elevated temperatures and applications to CO broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23–34 (1984).
[CrossRef]

Meas. Sci. Technol.

R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9, 327–338 (1998).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3  μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

R. M. Spearrin, C. S. Goldenstein, J. B. Jeffries, and R. K. Hanson, “Fiber-coupled 2.7  μm laser absorption sensor for CO2 in harsh combustion environments,” Meas. Sci. Technol. 24, 055107 (2013).
[CrossRef]

Opt. Lett.

Proc. Combust. Inst.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007).
[CrossRef]

G. Rieker, J. Jeffries, R. Hanson, T. Mathur, M. Gruber, and C. Carter, “Diode laser-based detection of combustor instabilities with application to a scramjet engine,” Proc. Combust. Inst. 32, 831–838 (2009).
[CrossRef]

R. K. Hanson, “Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems,” Proc. Combust. Inst. 33, 1–40 (2011).
[CrossRef]

Symp. Combust.

E. L. Petersen, M. Röhrig, D. F. Davidson, R. K. Hanson, and C. T. Bowman, “High-pressure methane oxidation behind reflected shock waves,” Symp. Combust. 26, 799–806 (1996).

Other

J. Hecht, Understanding Fiber Optics (Pearson/Prentice Hall, 2006), p. 790.

C. S. Goldenstein, I. A. Schultz, J. B. Jeffries, and R. K. Hanson, “TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), p. 1061.

W. C. Reynolds, “The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN” (Stanford University, 1986).

U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, 2008), p. 597.

R. Sur, K. Sun, J. B. Jeffries, and R. K. Hanson, “Multi-species laser absorption sensors for in situ monitoring of syngas composition,” Appl. Phys. B, doi:10.1007/s00340-013-5567-2 (to be published).
[CrossRef]

A. W. Caswell, S. Roy, X. An, S. T. Sanders, J. Hoke, F. Schauer, and J. R. Gord, “High-bandwidth H2O absorption sensor for measuring pressure, enthalpy, and mass flux in a pulsed-detonation combustor,” in 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee (2012), pp. 1–10.

P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, and F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in CLEO (Optical Society of America, 2013), paper JW2A.68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Absorption line-strengths of CO, CO2, and H2O at 2000 K (HITEMP [23]).

Fig. 2.
Fig. 2.

Absorbance spectra simulations of equilibrium concentrations of CO, CO2, and H2O (air bath gas) near 4.855 μm at expected PDC conditions (C2H4-air, ϕ1); L=4cm. (a) P=10atm, T=2500K and (b) P=30atm, T=3000K.

Fig. 3.
Fig. 3.

Measured modulation depth at maximum injection-current amplitude (±120mA) as a function of laser modulation frequency.

Fig. 4.
Fig. 4.

Measured laser intensity parameters (i0 and i2) as a function of modulation depth (f=50kHz).

Fig. 5.
Fig. 5.

Simulated WMS-2f (background subtracted) at 2059.91cm1 as a function of modulation depth for various pressures at 2000 K.

Fig. 6.
Fig. 6.

Simulated CO WMS spectra (2f, 1f, 2f/1f) near 2059.9cm1 at a typical PDC condition; T=2000K, P=20atm, L=4cm, xco=1%.

Fig. 7.
Fig. 7.

Measured absorbance spectra of CO in N2 near 2060cm1 with active P-branch lines labeled P(v”,J”) and fit with the Voigt function; T=804K, P=1atm, L=20.95cm, xco=0.005.

Fig. 8.
Fig. 8.

Sensitivity analysis of the WMS-2f/1f mole fraction measurement near 2059.91cm1 to the line-strength and collisional broadening parameters of the P(0,20) and P(1,14) CO lines at a typical PDC condition (see Fig. 7).

Fig. 9.
Fig. 9.

Measured nitrogen-broadening coefficient for the P(0,20) line from 1100 to 2600 K including a best-fit power law equation and comparison with broadening equations from other sources; P=1050atm.

Fig. 10.
Fig. 10.

Sensor validation data showing the measured CO mole fraction compared to the known mole fraction over a range of conditions produced in a shock tube (σ3%); L=5cm, xco=0.00495 in N2.

Fig. 11.
Fig. 11.

Simplified mid-infrared light delivery and detection schematic.

Fig. 12.
Fig. 12.

Representative time-history data from a pulsed (20 Hz) detonation combustor operating on ethylene/air; L=7.62cm. Pressure and WMS-2f/2f measurements are coplanar in combustion chamber.

Tables (1)

Tables Icon

Table 1. Spectroscopic Line Assignments and Collisional-Broadening Parameters for the CO Lines of Interesta

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(ItI0)v=exp(αv),
αv=ln(ItI0)v=iPxabsSi(T)ϕ(v)iL,
v(t)=v¯+acos(ωt),
I0(t)=I¯0[1+i0cos(ωt+ψ1)+i2cos(2ωt+ψ2)],
I0(t)/I¯0=1+0.718cos(2πft+1.16π)+0.0106cos(4πft+0.84π),
2γ(T)=2γ(T0)(T0T)n,

Metrics