Abstract

Chromatic dispersion of a 37 cm long, solid-core photonic bandgap (PBG) fiber was studied in the wavelength range of 740–840 nm with spectral interferometry employing a Mach–Zehnder interferometer and a high resolution spectrometer. The interferometer was illuminated by a Ti:sapphire laser providing 20 fs pulses. A comparative study has been carried out to find the most accurate spectral phase retrieval method that is suitable for measuring higher order chromatic dispersion. The stationary phase point, the minima–maxima, the cosine function fit, the Fourier transform, and the windowed Fourier transform methods were tested. It was shown that out of these five techniques, the Fourier-transform method provided the dispersion coefficients with the highest accuracy, and it could also detect rapid phase changes in the vicinity of leaking mode frequencies within the transmission band of the PBG fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription