Abstract

A low-cost, direct fabrication technique with a micrometer range resolution has been implemented for rapid prototyping of optical masks for photolithography and structured light and diffraction optics applications. Using a setup based on the optical unit of a compact disc–digital versatile disc burner, a low-energy infrared laser beam was focused on a thin polymeric layer with embedded absorbing carbon nanopowder coated on a transparent glass substrate. This allowed for the generation of a custom-made transparent pattern in a computer numerical control fashion. In addition to its great simplicity and repeatability, the method also enables grayscale contrasts for each pixel individually, and fabricated masks proved to resist high intensities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
    [CrossRef]
  2. E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
    [CrossRef]
  3. J. D. Musgraves, B. T. Close, and D. M. Tanenbaum, “A maskless photolithographic prototyping system using a low-cost consumer projector and a microscope,” Am. J. Phys. 73, 980–983 (2005).
    [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef]
  5. Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, “Permanent computer-generated holograms embedded in glass by femtosecond laser pulses,” Opt. Express 13, 2433–2438 (2005).
    [CrossRef]
  6. M. Hautefeuille, A. K. Jimenez-Zenteno, P. Perez-Alcazar, K. Hess-Frieling, G. Fernandez-Sanchez, V. Velazquez, M. Grether, and E. Lopez-Moreno, “Utilization of a digital-versatile-disc pickup head for benchtop laser microfabrication,” Appl. Opt. 51, 1171–1177 (2012).
    [CrossRef]
  7. M. A. Aegerter and M. Mennig, eds., Sol-Gel Technologies for Glass Producers and Users (Springer, 2004).
  8. M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
    [CrossRef]
  9. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [CrossRef]
  10. S. C. Singh, H. B. Zeng, C. Guo, and W. Cai, eds., Nanomaterials: Processing and Characterization with Lasers (Wiley, 2012).
  11. T. J. Suleski and D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef]

2013 (2)

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

2012 (1)

2011 (1)

2005 (2)

J. D. Musgraves, B. T. Close, and D. M. Tanenbaum, “A maskless photolithographic prototyping system using a low-cost consumer projector and a microscope,” Am. J. Phys. 73, 980–983 (2005).
[CrossRef]

Y. Li, Y. Dou, R. An, H. Yang, and Q. Gong, “Permanent computer-generated holograms embedded in glass by femtosecond laser pulses,” Opt. Express 13, 2433–2438 (2005).
[CrossRef]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

1998 (1)

D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
[CrossRef]

1995 (1)

An, R.

Black, A. J.

D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
[CrossRef]

Cabriales, L.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Caliò, A.

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

Carreon-Castro, M. P.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Close, B. T.

J. D. Musgraves, B. T. Close, and D. M. Tanenbaum, “A maskless photolithographic prototyping system using a low-cost consumer projector and a microscope,” Am. J. Phys. 73, 980–983 (2005).
[CrossRef]

De Stefano, L.

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

Dou, Y.

Fernandez-Sanchez, G.

Gong, Q.

Grether, M.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

M. Hautefeuille, A. K. Jimenez-Zenteno, P. Perez-Alcazar, K. Hess-Frieling, G. Fernandez-Sanchez, V. Velazquez, M. Grether, and E. Lopez-Moreno, “Utilization of a digital-versatile-disc pickup head for benchtop laser microfabrication,” Appl. Opt. 51, 1171–1177 (2012).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Hautefeuille, M.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

M. Hautefeuille, A. K. Jimenez-Zenteno, P. Perez-Alcazar, K. Hess-Frieling, G. Fernandez-Sanchez, V. Velazquez, M. Grether, and E. Lopez-Moreno, “Utilization of a digital-versatile-disc pickup head for benchtop laser microfabrication,” Appl. Opt. 51, 1171–1177 (2012).
[CrossRef]

Hernández-Cordero, J.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Hess-Frieling, K.

Jimenez-Zenteno, A. K.

Li, Y.

Lopez-Moreno, E.

López-Moreno, E.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Medugno, M.

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

Musgraves, J. D.

J. D. Musgraves, B. T. Close, and D. M. Tanenbaum, “A maskless photolithographic prototyping system using a low-cost consumer projector and a microscope,” Am. J. Phys. 73, 980–983 (2005).
[CrossRef]

O’Shea, D. C.

Orabona, E.

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

Oropeza-Ramos, L.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Padgett, M. J.

Perez-Alcazar, P.

Pimentel-Domínguez, R.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Qin, D.

D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
[CrossRef]

Rendina, I.

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

Rivera, M.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Suleski, T. J.

Tanenbaum, D. M.

J. D. Musgraves, B. T. Close, and D. M. Tanenbaum, “A maskless photolithographic prototyping system using a low-cost consumer projector and a microscope,” Am. J. Phys. 73, 980–983 (2005).
[CrossRef]

Velazquez, V.

Velázquez, V.

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Whitesides, G. M.

D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
[CrossRef]

Xia, Y.

D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
[CrossRef]

Yang, H.

Yao, A. M.

Adv. Opt. Photon. (1)

Am. J. Phys. (1)

J. D. Musgraves, B. T. Close, and D. M. Tanenbaum, “A maskless photolithographic prototyping system using a low-cost consumer projector and a microscope,” Am. J. Phys. 73, 980–983 (2005).
[CrossRef]

Appl. Opt. (2)

J. Vac. Sci. Technol. B (1)

D. Qin, Y. Xia, A. J. Black, and G. M. Whitesides, “Photolithography with transparent reflective photomasks,” J. Vac. Sci. Technol. B 16, 98–103 (1998).
[CrossRef]

Lab Chip (1)

M. Hautefeuille, L. Cabriales, R. Pimentel-Domínguez, V. Velázquez, J. Hernández-Cordero, L. Oropeza-Ramos, M. Rivera, M. P. Carreon-Castro, M. Grether, and E. López-Moreno, “New perspectives in direct PDMS microfabrication using a CD–DVD laser,” Lab Chip 13, 4848–4854 (2013).
[CrossRef]

Micromachines (1)

E. Orabona, A. Caliò, I. Rendina, L. De Stefano, and M. Medugno, “Photomasks fabrication based on optical reduction for microfluidic applications,” Micromachines 4, 206–214 (2013).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Opt. Express (1)

Other (2)

M. A. Aegerter and M. Mennig, eds., Sol-Gel Technologies for Glass Producers and Users (Springer, 2004).

S. C. Singh, H. B. Zeng, C. Guo, and W. Cai, eds., Nanomaterials: Processing and Characterization with Lasers (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Diagram of the fabrication of the dark CNP composite layer on glass, (b) laser-induced incandescence process on the composite layer, and (c) CNC laser transfer of a bitmap pattern. Scale bar is 100 μm long.

Fig. 2.
Fig. 2.

In-plane feature resolution as a function of laser wavelength, power density, and number of passes. Pulse time was 5 ms. Inset shows an example of parallel lines etched with different laser passes (scale=100μm).

Fig. 3.
Fig. 3.

Optical micrographs and SEM details of grayscale patterns after one (1×), two (2×), and four (4×) NIR laser passes of the NIR laser at 30mW/cm2 with a 5 ms pulse. Insets are micrographs taken with an inverted optical microscope and illumination with a 40 W white light bulb.

Fig. 4.
Fig. 4.

(a) SEM micrograph of the detail of a “one-pixel” line etched with the CNC platform. (b) Larger laser-etched opening with (c) visible microsphere defects.

Fig. 5.
Fig. 5.

Example of a three-slit optical mask and its respective diffraction pattern. Normalized intensity profile of experimental results (solid line) is compared with theory (dashed line).

Fig. 6.
Fig. 6.

Examples of fork-like diffraction masks and their corresponding patterns. Micrographs were recorded using an optical microscope and a digital camera by (a) light reflection and (b)–(d) transmission. Scale bars of micrographs are 100 μm long.

Fig. 7.
Fig. 7.

Relative height of photolithographic patterns transferred in a Loctite 3525 resin obtained with a laser-etched mask and a printed grayscale mask.

Metrics