Abstract

A low-cost, direct fabrication technique with a micrometer range resolution has been implemented for rapid prototyping of optical masks for photolithography and structured light and diffraction optics applications. Using a setup based on the optical unit of a compact disc–digital versatile disc burner, a low-energy infrared laser beam was focused on a thin polymeric layer with embedded absorbing carbon nanopowder coated on a transparent glass substrate. This allowed for the generation of a custom-made transparent pattern in a computer numerical control fashion. In addition to its great simplicity and repeatability, the method also enables grayscale contrasts for each pixel individually, and fabricated masks proved to resist high intensities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription