Abstract

A flexible illumination system for Talbot lithography is presented, in which the Talbot mask is illuminated by discrete but variable incidence angles. Changing the illumination angle stepwise in combination with different exposure doses for different angles offers the possibility to generate periodic continuous surface relief structures. To demonstrate the capability of this approach, two exemplary micro-optical structures were manufactured. The first example is a blazed grating with a stepsize of 1.5 μm. The second element is a specific beam splitter with parabolic-shaped grating grooves. The quality of the manufacturing process is evaluated on the basis of the optical performance of the resulting micro-optical elements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. G. Loewen, Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997).
  2. R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.
  3. R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).
  4. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).
    [CrossRef]
  5. L. Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. 11(67), 196–205 (1881).
    [CrossRef]
  6. W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot-Lau configurations,” Opt. Express 17, 20966–20974 (2009).
    [CrossRef]
  7. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63, 416–419 (1973).
    [CrossRef]
  8. T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).
  9. L. Stuerzebecher, T. Harzendorf, U. Vogler, U. D. Zeitner, and R. Voelkel, “Advanced mask aligner lithography: fabrication of periodic patterns using pinhole array mask and Talbot effect,” Opt. Express 18, 19485–19494 (2010).
    [CrossRef]
  10. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968–20974 (2010).
    [CrossRef]
  11. P. M. Mejías and R. Martínez Herrero, “Diffraction by one-dimensional Ronchi grids: on the validity of the Talbot effect,” J. Opt. Soc. Am. A 8, 266–269 (1991).
    [CrossRef]
  12. E. G. Loewen, “11.2 spectral purity,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 402–413.
  13. E. G. Loewen, “14.4.4 periodic errors,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 509–510.
  14. J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
    [CrossRef]
  15. E. G. Loewen, “15.3 two-beam symmetrical recording,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 538–541.

2013 (1)

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

2010 (3)

2009 (1)

2003 (1)

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).

1991 (1)

1973 (1)

1881 (1)

L. Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. 11(67), 196–205 (1881).
[CrossRef]

1836 (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).
[CrossRef]

Arndt, M.

Bich, A.

Brunner, R.

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

Bryngdahl, O.

Case, W. B.

Cullmann, E.

Deachapunya, S.

Dobschal, H.-J.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

Fechner, R.

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

Gatto, A.

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

Harzendorf, T.

Hornung, M.

Loewen, E. G.

E. G. Loewen, Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997).

E. G. Loewen, “11.2 spectral purity,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 402–413.

E. G. Loewen, “14.4.4 periodic errors,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 509–510.

E. G. Loewen, “15.3 two-beam symmetrical recording,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 538–541.

Maass, J.

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

Martínez Herrero, R.

Mejías, P. M.

Pernet, P.

Rayleigh, L.

L. Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. 11(67), 196–205 (1881).
[CrossRef]

Rudolf, K.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

Sandfuchs, O.

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

Schindler, A.

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

Steiner, R.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

Stuerzebecher, L.

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).
[CrossRef]

Thomae, D.

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

Tomandl, M.

Voelkel, R.

Vogler, U.

Weible, K. J.

Zeitner, U. D.

Zoberbier, R.

J. Eur. Opt. Soc. (1)

J. Maass, O. Sandfuchs, D. Thomae, A. Gatto, and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask,” J. Eur. Opt. Soc. 8, 13004 (2013).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Philos. Mag. (2)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9(56), 401–407 (1836).
[CrossRef]

L. Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. 11(67), 196–205 (1881).
[CrossRef]

Proc. SPIE (2)

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193  nm inspection systems,” Proc. SPIE 5177, 9–15 (2003).

T. Harzendorf, L. Stuerzebecher, U. Vogler, U. D. Zeitner, and R. Voelkel, “Half-tone proximity lithography,” Proc. SPIE 7716, 77160Y (2010).

Other (5)

E. G. Loewen, Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997).

R. Brunner, R. Steiner, K. Rudolf, H.-J. Dobschal, R. Fechner, and A. Schindler, “Deep-UV microscopy based on a hybrid diffractive/refractive lens system,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing (Optical Society of America, 2004), paper DSuC3.

E. G. Loewen, “11.2 spectral purity,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 402–413.

E. G. Loewen, “14.4.4 periodic errors,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 509–510.

E. G. Loewen, “15.3 two-beam symmetrical recording,” in Diffraction Gratings and Applications, Vol. 58 of Optical Engineering (Dekker, 1997), pp. 538–541.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic experimental setup consisting of source, collimator (filters), a tilting mirror, mask, and resist coated substrate: the source’s radiation is collimated by a condenser lens and may get additionally filtered. The remaining light is deflected by a mirror onto the mask. The Talbot carpet adjacent to the mask is used to expose the resist coated substrate. Due to different tilting angles of the mirror, the radiation’s incident angle onto the mask is varied. This shifts the exposure pattern (Fig. 2).

Fig. 2.
Fig. 2.

Sequential exposure process—in each step the corresponding illuminating angle shifts the foci of the Talbot carpets and, therefore, subsequently exposes different positions on the resist. The dose per position is varied over the applied exposure time.

Fig. 3.
Fig. 3.

(a) Maximum principal ray angle βmax for Talbot lithography and (b) angular spectrum’s extent of the illumination radiation formed by the collimator.

Fig. 4.
Fig. 4.

AFM scan showing the topography of the blaze-like grating structure manufactured by serial Talbot lithography. The grating shows a lateral period of 10 μm and a depth of approximately 1.55 μm. The resist grating was coated with aluminum.

Fig. 5.
Fig. 5.

Setup for efficiency measurement—only principal rays are drawn. The numbers denote the different diffraction orders.

Fig. 6.
Fig. 6.

Diffraction efficiency of manufactured blaze grating.

Fig. 7.
Fig. 7.

Far-field diffraction images of the grating with marked diffraction orders—the lower image was captured with eight times the exposure time of the upper one.

Fig. 8.
Fig. 8.

Measured wavefront for the order noted above, peak-to-valley (PV) and RMS in micrometers. The black dot in the images’ center is caused by the wavefront sensor.

Fig. 9.
Fig. 9.

AFM cross section showing the topography of the parabolic-shaped grooves of the beam splitter grating manufactured by serial Talbot lithography. The grating possesses a lateral period of 10 μm and a depth of approximately 2.5 μm.

Fig. 10.
Fig. 10.

Measured diffraction efficiency of the beam splitter grating for two polarization directions (“measured TM” and “measured TE”) and the related rigorous-coupled-wave analysis (RCWA) simulated efficiencies (“Unigit TM” and “Unigit TE”).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

βmaxarctan(p2·zMR)=arctan(λ2·p).
α=arctan(Lf).

Metrics