Abstract

We present the modeling and the experiment on the lateral integration of a vertical-cavity surface-emitting laser (VCSEL) and slow light Bragg reflector waveguide devices. The modeling shows an efficient direct-lateral coupling from a VCSEL to an integrated slow light waveguide. The calculated result shows a possibility of 13 dB chip gain and an extinction ratio over 5 dB for a compact slow light semiconductor optical amplifier (SOA) and electroabsorption modulator integrated with a VCSEL, respectively. We demonstrate an SOA-integrated VCSEL, exhibiting the maximum output power over 6 mW. Also, we fabricate a sub-50-μm long electroabsorption modulator laterally integrated with a VCSEL. An extinction ratio of over 15 dB for a voltage swing of 2.0 V is obtained without noticeable change of threshold. In addition, we demonstrate an on-chip electrothermal beam deflector integrated with a VCSEL.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
    [CrossRef]
  2. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  3. M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).
  4. E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).
  5. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30, 448–457 (2012).
    [CrossRef]
  6. K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
    [CrossRef]
  7. Y.-C. Chang, C. S. Wang, and L. A. Coldren, “Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers,” Electron. Lett. 43, 396–397 (2007).
    [CrossRef]
  8. Y.-C. Chang, C. S. Wang, and L. Coldren, “High-efficiency, high-speed VCSELs with 35  Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
    [CrossRef]
  9. T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.
  10. P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
    [CrossRef]
  11. A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
    [CrossRef]
  12. A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
    [CrossRef]
  13. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
    [CrossRef]
  14. W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.
  15. S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
    [CrossRef]
  16. R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
    [CrossRef]
  17. D. K. Serkland, G. M. Peake, and K. M. Geib, presented at the Conference on Lasers and Electro-Optics, San Francisco, California (2004), paper CTuAA2.
  18. G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.
  19. K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.
  20. A. Fuchida, A. Matsutani, and F. Koyama, “Slow-light total-internal-reflection switch with bending angle of 30  deg,” Opt. Lett. 36, 2644–2646 (2011).
    [CrossRef]
  21. X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express 19, 22675–22683 (2011).
    [CrossRef]
  22. X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
    [CrossRef]
  23. X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
    [CrossRef]
  24. V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
    [CrossRef]
  25. A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Appl. Opt. 2, 211–233 (1993).
    [CrossRef]
  26. T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
    [CrossRef]
  27. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
    [CrossRef]
  28. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).
  29. T. Matsuda, F. Abe, and H. Takahashi, “Laser printer scanning system with a parabolic mirror,” Appl. Opt. 17, 878–884 (1978).
    [CrossRef]
  30. J. C. Wyant, “Rotating diffraction grating laser beam scanner,” Appl. Opt. 14, 1057–1058 (1975).
    [CrossRef]

2012 (2)

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30, 448–457 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
[CrossRef]

2011 (3)

2010 (2)

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

2009 (2)

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

2007 (2)

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers,” Electron. Lett. 43, 396–397 (2007).
[CrossRef]

Y.-C. Chang, C. S. Wang, and L. Coldren, “High-efficiency, high-speed VCSELs with 35  Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[CrossRef]

2004 (2)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

2002 (1)

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

2000 (1)

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

1998 (2)

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
[CrossRef]

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

1996 (1)

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[CrossRef]

1993 (1)

A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Appl. Opt. 2, 211–233 (1993).
[CrossRef]

1986 (1)

T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
[CrossRef]

1985 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

1978 (1)

1975 (1)

Abe, F.

Akagawa, T.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Alduino, A.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Anan, T.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Barnett, B.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Barnett, B. C.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Bimberg, D.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Block, B. A.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Blokhin, S. A.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

Braunisch, H.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Cadien, K.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Caneau, C.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Chang, W. S. C.

T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
[CrossRef]

Chang, Y.-C.

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers,” Electron. Lett. 43, 396–397 (2007).
[CrossRef]

Y.-C. Chang, C. S. Wang, and L. Coldren, “High-efficiency, high-speed VCSELs with 35  Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[CrossRef]

Chang-Hasnain, C. J.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Chen, L. P.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

Chu, P.

T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
[CrossRef]

Coldren, L.

Y.-C. Chang, C. S. Wang, and L. Coldren, “High-efficiency, high-speed VCSELs with 35  Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[CrossRef]

Coldren, L. A.

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers,” Electron. Lett. 43, 396–397 (2007).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Esser, N.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Fiol, G.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

Fleischer, K.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Fuchida, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

A. Fuchida, A. Matsutani, and F. Koyama, “Slow-light total-internal-reflection switch with bending angle of 30  deg,” Opt. Lett. 36, 2644–2646 (2011).
[CrossRef]

Fukatsu, K.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Geib, K. M.

D. K. Serkland, G. M. Peake, and K. M. Geib, presented at the Conference on Lasers and Electro-Optics, San Francisco, California (2004), paper CTuAA2.

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Grote, N.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Gu, X.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express 19, 22675–22683 (2011).
[CrossRef]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Haglund, Å.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

Haglund, J. Å.

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Haisler, V. A.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Hasebe, K.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Hatakeyama, H.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Heck, J.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Hirano, G.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

Hofmann, W.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Hopfer, F.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Hudgings, J. A.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

Iga, K.

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

Imamura, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

Joel, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Karlsson, A.

R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
[CrossRef]

Kobrinsky, M. J.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

Koyama, F.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express 19, 22675–22683 (2011).
[CrossRef]

A. Fuchida, A. Matsutani, and F. Koyama, “Slow-light total-internal-reflection switch with bending angle of 30  deg,” Opt. Lett. 36, 2644–2646 (2011).
[CrossRef]

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Kroh, M.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Kuroki, K.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Larsson, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Lau, K. Y.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

Ledentsov, N. N.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Lewén, R.

R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
[CrossRef]

Li, G. S.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

Lim, S. F.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

List, S.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Liu, A.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Lochmann, A.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Lott, J. A.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

Lu, D.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Matsuda, T.

Matsutani, A.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

A. Fuchida, A. Matsutani, and F. Koyama, “Slow-light total-internal-reflection switch with bending angle of 30  deg,” Opt. Lett. 36, 2644–2646 (2011).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Mohammed, E.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Möller, C.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Mooney, R.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Moser, P.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Mutig, A.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

Nadtochiy, A. M.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

Nishiyama, N.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Payusov, A.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

Peake, G. M.

D. K. Serkland, G. M. Peake, and K. M. Geib, presented at the Conference on Lasers and Electro-Optics, San Francisco, California (2004), paper CTuAA2.

Rapp, S.

R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
[CrossRef]

Reshotko, M.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Richter, W.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Robertson, F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Sakaguchi, T.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Sellin, R. L.

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

Serkland, D. K.

D. K. Serkland, G. M. Peake, and K. M. Geib, presented at the Conference on Lasers and Electro-Optics, San Francisco, California (2004), paper CTuAA2.

Shchukin, V. A.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

Shimada, T.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express 19, 22675–22683 (2011).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

Skold, M.

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Streubel, K.

R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
[CrossRef]

Sudbo, A. S.

A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Appl. Opt. 2, 211–233 (1993).
[CrossRef]

Suzuki, N.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Takahashi, H.

Taubenblatt, M. A.

Thomas, T.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Tokutome, K.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Tooley, F. A. P.

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[CrossRef]

Tsuji, M.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Van Eck, T. E.

T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
[CrossRef]

Vandentop, G.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

Wang, C. S.

Y.-C. Chang, C. S. Wang, and L. Coldren, “High-efficiency, high-speed VCSELs with 35  Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[CrossRef]

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers,” Electron. Lett. 43, 396–397 (2007).
[CrossRef]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

Wieder, H. H.

T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Wolf, P.

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Wyant, J. C.

Yashiki, K.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

Young, I.

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Yuen, W.

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

Zah, C. E.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

Zah, C.-E.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

Zheng, J.-F.

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

Appl. Opt. (3)

Appl. Phys. Lett. (5)

V. A. Haisler, F. Hopfer, R. L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N. N. Ledentsov, D. Bimberg, C. Möller, and N. Grote, “Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors,” Appl. Phys. Lett. 81, 2544–2546 (2002).
[CrossRef]

T. E. Van Eck, P. Chu, W. S. C. Chang, and H. H. Wieder, “Electroabsorption in an InGaAs/GaAs strained layer multiple quantum well structure,” Appl. Phys. Lett. 49, 135–136 (1986).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GaInAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett. 99, 211107 (2011).
[CrossRef]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[CrossRef]

A. Mutig, J. A. Lott, S. A. Blokhin, P. Wolf, P. Moser, W. Hofmann, A. M. Nadtochiy, A. Payusov, and D. Bimberg, “Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 97, 151101 (2010).
[CrossRef]

Electron. Lett. (3)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1015 (2010).
[CrossRef]

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “Small-dimension power-efficient high-speed vertical-cavity surface-emitting lasers,” Electron. Lett. 43, 396–397 (2007).
[CrossRef]

Y.-C. Chang, C. S. Wang, and L. Coldren, “High-efficiency, high-speed VCSELs with 35  Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

P. Westbergh, J. S. Gustavsson, J. Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[CrossRef]

F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[CrossRef]

IEEE Photon. J. (1)

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photon. J. 4, 1712–1719 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. F. Lim, J. A. Hudgings, L. P. Chen, G. S. Li, W. Yuen, K. Y. Lau, and C. J. Chang-Hasnain, “Modulation of a vertical-cavity surface-emitting laser using an intracavity quantum-well absorber,” IEEE Photon. Technol. Lett. 10, 319–321 (1998).
[CrossRef]

R. Lewén, K. Streubel, A. Karlsson, and S. Rapp, “Experimental demonstration of a multifunctional long-wavelength vertical-cavity laser amplifier-detector,” IEEE Photon. Technol. Lett. 10, 1067–1069 (1998).
[CrossRef]

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

Intel Technol. J. (2)

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, “On-chip optical interconnects,” Intel Technol. J. 8, 129–141 (2004).

E. Mohammed, A. Alduino, T. Thomas, H. Braunisch, D. Lu, J. Heck, A. Liu, I. Young, B. Barnett, G. Vandentop, and R. Mooney, “Optical interconnect system integration for ultra-short-reach applications,” Intel Technol. J. 8, 115–127 (2004).

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. Lett. 32, 1043–1060 (1985).

Other (5)

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, presented at the Optical Fiber Communication Conference, San Diego, California (2008), paper OThS5.

D. K. Serkland, G. M. Peake, and K. M. Geib, presented at the Conference on Lasers and Electro-Optics, San Francisco, California (2004), paper CTuAA2.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, presented at the Optical Fiber Communications Conference, Anaheim, California (2007), paper PDP34.

K. Kuroki, G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C. E. Zah, presented at the European Conference and Exhibition on Optical Communication, Berlin, Germany (2007), paper P049.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, presented at the Optical Fiber Communication Conference, Los Angeles, California (2011), paper PDPC5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Schematic structure of a lateral integration of a VCSEL and slow light devices.

Fig. 2.
Fig. 2.

Schematic view of calculated model for lateral optical coupling.

Fig. 3.
Fig. 3.

Calculated intensity distribution in the lateral direction when the oxide width is 2 μm and one DBR pair is inserted between the oxide layer and the active region.

Fig. 4.
Fig. 4.

Calculated coupling efficiency as a function of the oxide width between the VCSEL and the slow light waveguide.

Fig. 5.
Fig. 5.

Schematic structure of a laterally integrated Bragg reflector waveguide with a 980 nm VCSEL.

Fig. 6.
Fig. 6.

(a) Measured NFP and (b) FFP from the slow light Bragg reflector waveguide with an offset wavelength of 20 nm between the lasing wavelength and the QWs photoluminescent peak of the epitaxial wafer.

Fig. 7.
Fig. 7.

Calculated radiation angle and slow down factor as a function of the lasing wavelength deviation from the cutoff wavelength.

Fig. 8.
Fig. 8.

Calculated intensity distribution in the lateral direction for different injection current densities into the slow light SOA.

Fig. 9.
Fig. 9.

Gain saturation characteristic of slow light SOA.

Fig. 10.
Fig. 10.

Top view of the fabricated slow light SOA integrated with a 980 nm VCSEL.

Fig. 11.
Fig. 11.

Output versus the injection current into the VCSEL excluding a leakage current for different injection currents into the SOA.

Fig. 12.
Fig. 12.

(a) NFP measured by a CCD camera. (b) Intensity distribution in the lateral direction for different injection currents into the SOA.

Fig. 13.
Fig. 13.

Spectrally resolved intensity for different injection currents into the SOA.

Fig. 14.
Fig. 14.

Calculated intensity distribution in the lateral direction for different absorption coefficients of QWs in the modulator section.

Fig. 15.
Fig. 15.

(a) Schematic view of a slow light modulator laterally integrated with a VCSEL. (b) Top view of the fabricated device with protecting the vertical emission from the VCSEL by a needle.

Fig. 16.
Fig. 16.

(a) L/I characteristics with different applied voltages in the slow light modulator with screening the VCSEL output by a needle. (b) Lasing spectra with different applied voltages in the slow light modulator.

Fig. 17.
Fig. 17.

(a) NFPs and (b) FFPs with different applied voltages in the slow light modulator.

Fig. 18.
Fig. 18.

(a) Schematic structure of an on-chip beam steering device and (b) measured FFPs for different injection currents into the VCSEL.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1/τout=vg|2dy|E|2dydz,
η=1/τout1/τint+1/τout,
sinθr=nwg×1(λVCSELλc)2,
f=c/nwgvg(1(λVCSELλc))1,
{dNdt=ηiIqV(BN2+CN3)fvggSdSdz={fΓg(αr+αi)}S,
Pout=0L(Sαr)wdvghνΓdz,
G=10log(αrL).

Metrics