Abstract

We demonstrate an application of a liquid-crystal-based spatial light modulator (LC-SLM) for the parallel generation of optically smooth structured surfaces on Borofloat 33 glass. In this work, the picosecond laser beam intensity profile of wavelength 515 nm is spatially altered by a LC-SLM, and then delivered to the workpiece in order to generate surface deformations whose shape corresponds to the image generated by the LC display. To ensure that localized melting occurs without ablation, the glass surface is covered by a thin layer of graphite prior to laser treatment to provide increased linear absorption of the laser light. After laser treatment the residual graphite layer is removed using methanol and the whole sample is annealed for 1 h at a temperature of 560 °C, making the laser-induced surface deformations optically smooth.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription