Abstract

Filtered Rayleigh scattering (FRS) is applied to determine two-dimensional temperature distributions in a hexamethyldisiloxane loaded propane/air flame intended for combustion chemical vapor deposition processes. An iodine cell as a molecular filter suppresses background scattering, e.g., by particles, while the wings of the spectrally broadened Rayleigh scattering can pass this filter. A frequency-doubled Nd:YAG laser is tuned to a strong absorption line of iodine. The gas temperature is deduced from the transmitted Rayleigh scattering signal. Since FRS also depends on molecule-specific scattering cross sections, the local gas composition of majority species is measured using the Raman scattering technique. Limits and restrictions are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Li, ed., Optical Fiber Communication (Academic, 1985).
  2. H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596 (2001).
    [CrossRef]
  3. L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
    [CrossRef]
  4. R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chim. Oggi 22, 27–29 (2004).
  5. A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).
  6. K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).
  7. K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
    [CrossRef]
  8. E. W. Rothe and P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
    [CrossRef]
  9. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, and J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
    [CrossRef]
  10. C. Schulz, V. Sick, J. Heinze, and W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A-X(0, 2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
    [CrossRef]
  11. D. Grebner, D. Müller, and W. Triebel, “Pulse to pulse wavelength switching of a narrowband excimer laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, Vol. 246 (1996).
  12. D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
    [CrossRef]
  13. R. B. Miles, J. N. Forkey, and W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” in Proceeding of AIAA, Nashville, Tennessee, July 6–8, 1992, pp. 3892–3894.
  14. R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
    [CrossRef]
  15. D. Hoffman, K. U. Munch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [CrossRef]
  16. G. S. Elliott and T. J. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
    [CrossRef]
  17. G. S. Elliott, N. Glumac, and C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
    [CrossRef]
  18. D. Most and A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
    [CrossRef]
  19. G. Sutton, “The development of a combustion temperature standard for the calibration of optical diagnostic techniques,” Ph.D. dissertation (Cranfield University, 2005).
  20. A. P. Yalin and R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).
  21. S. P. Kearney, R. W. Schefer, S. J. Beresh, and T. W. Grasser, “Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering,” Appl. Opt. 44, 1548–1558 (2005).
    [CrossRef]
  22. J. Zetterberg, Z. S. Li, and M. Alden, “Development of filtered Rayleigh scattering for real world temperature and fuel/air ratio imaging,” in Proceedings of 3rd European Combustion Meeting, Chania, Crete, Greece (2007).
  23. J. Zetterberg, “Development of laser-spectroscopic techniques for new detection schemes in combustion diagnostics,” Ph.D. dissertation (Lund University, 2008).
  24. G. Stockhausen, U. Doll, T. Strehlau, and C. Willert, “Combined filtered Rayleigh and MIE scattering for simultaneous planar temperature and velocity measurements,” 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010).
  25. R. B. Miles and W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
    [CrossRef]
  26. S. Gerstenkorn and P. Luc, “Atlas du spectre d’absorption de la molécule d’iode,” Editions du CNRS, Part III, Paris (1978).
  27. D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
  28. A. Burkert, D. Müller, and W. Paa, “Si and SiO detection in a HMDSO/propane/air flame using spatially resolved emission spectroscopy (OES),” J. Quant. Spectrosc. Radiat. Transfer 114, 101–108 (2013).
    [CrossRef]
  29. E. P. Hassel, “RAMan Spectra Efficient Simulation (RAMSES), simulation program for Raman spectra,” https://sites.google.com/site/egonsgwebsite/home/ra .
  30. P. Gillet, A. Le Cleach, and M. Madon, “High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures,” J. Geophys. Res. 95, 21635–21655 (1990).
    [CrossRef]
  31. H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

2013 (1)

A. Burkert, D. Müller, and W. Paa, “Si and SiO detection in a HMDSO/propane/air flame using spatially resolved emission spectroscopy (OES),” J. Quant. Spectrosc. Radiat. Transfer 114, 101–108 (2013).
[CrossRef]

2005 (2)

S. P. Kearney, R. W. Schefer, S. J. Beresh, and T. W. Grasser, “Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering,” Appl. Opt. 44, 1548–1558 (2005).
[CrossRef]

K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
[CrossRef]

2004 (1)

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chim. Oggi 22, 27–29 (2004).

2003 (3)

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

2002 (1)

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

2001 (4)

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596 (2001).
[CrossRef]

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

G. S. Elliott, N. Glumac, and C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

D. Most and A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
[CrossRef]

2000 (1)

A. P. Yalin and R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).

1999 (1)

G. S. Elliott and T. J. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

1997 (3)

1996 (1)

1990 (1)

P. Gillet, A. Le Cleach, and M. Madon, “High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures,” J. Geophys. Res. 95, 21635–21655 (1990).
[CrossRef]

1988 (1)

Alden, M.

K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
[CrossRef]

J. Zetterberg, Z. S. Li, and M. Alden, “Development of filtered Rayleigh scattering for real world temperature and fuel/air ratio imaging,” in Proceedings of 3rd European Combustion Meeting, Chania, Crete, Greece (2007).

Andresen, P.

Barlow, R. S.

K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
[CrossRef]

Bath, A.

Beresh, S. J.

Beutner, T. J.

G. S. Elliott and T. J. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Bochmann, A.

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

Burkert, A.

A. Burkert, D. Müller, and W. Paa, “Si and SiO detection in a HMDSO/propane/air flame using spatially resolved emission spectroscopy (OES),” J. Quant. Spectrosc. Radiat. Transfer 114, 101–108 (2013).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

Carter, C. D.

G. S. Elliott, N. Glumac, and C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Chung, K. M.

H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

Doll, U.

G. Stockhausen, U. Doll, T. Strehlau, and C. Willert, “Combined filtered Rayleigh and MIE scattering for simultaneous planar temperature and velocity measurements,” 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010).

Eckardt, D.

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

Elliott, G. S.

G. S. Elliott, N. Glumac, and C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

G. S. Elliott and T. J. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Forkey, J. N.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

R. B. Miles, J. N. Forkey, and W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” in Proceeding of AIAA, Nashville, Tennessee, July 6–8, 1992, pp. 3892–3894.

Frigge, M.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Atlas du spectre d’absorption de la molécule d’iode,” Editions du CNRS, Part III, Paris (1978).

Gillet, P.

P. Gillet, A. Le Cleach, and M. Madon, “High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures,” J. Geophys. Res. 95, 21635–21655 (1990).
[CrossRef]

Glumac, N.

G. S. Elliott, N. Glumac, and C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

Grasser, T. W.

Grebner, D.

D. Grebner, D. Müller, and W. Triebel, “Pulse to pulse wavelength switching of a narrowband excimer laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, Vol. 246 (1996).

Gröger, W.

Heft, A.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Heinze, J.

Hoffman, D.

Kammler, H. K.

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596 (2001).
[CrossRef]

Kearney, S. P.

Kohse-Höinghaus, K.

K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
[CrossRef]

Le Cleach, A.

P. Gillet, A. Le Cleach, and M. Madon, “High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures,” J. Geophys. Res. 95, 21635–21655 (1990).
[CrossRef]

Leipertz, A.

Lempert, W. R.

R. B. Miles and W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

R. B. Miles, J. N. Forkey, and W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” in Proceeding of AIAA, Nashville, Tennessee, July 6–8, 1992, pp. 3892–3894.

Li, Z. S.

J. Zetterberg, Z. S. Li, and M. Alden, “Development of filtered Rayleigh scattering for real world temperature and fuel/air ratio imaging,” in Proceedings of 3rd European Combustion Meeting, Chania, Crete, Greece (2007).

Luc, P.

S. Gerstenkorn and P. Luc, “Atlas du spectre d’absorption de la molécule d’iode,” Editions du CNRS, Part III, Paris (1978).

Lülf, H. W.

Ma, H. K.

H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

Mädler, L.

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596 (2001).
[CrossRef]

Madon, M.

P. Gillet, A. Le Cleach, and M. Madon, “High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures,” J. Geophys. Res. 95, 21635–21655 (1990).
[CrossRef]

Meijer, G.

Miles, R. B.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

A. P. Yalin and R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).

R. B. Miles and W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

R. B. Miles, J. N. Forkey, and W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” in Proceeding of AIAA, Nashville, Tennessee, July 6–8, 1992, pp. 3892–3894.

Most, D.

Mueller, R.

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

Müller, D.

A. Burkert, D. Müller, and W. Paa, “Si and SiO detection in a HMDSO/propane/air flame using spatially resolved emission spectroscopy (OES),” J. Quant. Spectrosc. Radiat. Transfer 114, 101–108 (2013).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Grebner, D. Müller, and W. Triebel, “Pulse to pulse wavelength switching of a narrowband excimer laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, Vol. 246 (1996).

Munch, K. U.

Niemann, A.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Paa, W.

A. Burkert, D. Müller, and W. Paa, “Si and SiO detection in a HMDSO/propane/air flame using spatially resolved emission spectroscopy (OES),” J. Quant. Spectrosc. Radiat. Transfer 114, 101–108 (2013).
[CrossRef]

Pfuch, A.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Pratsinis, S. E.

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chim. Oggi 22, 27–29 (2004).

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596 (2001).
[CrossRef]

Rechtenbach, A.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Richter, T.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Röper, J.

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

Rothe, E. W.

Schefer, R. W.

Schmidl, G.

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

Schulz, C.

Schwerin, M.

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

Sick, V.

Stockhausen, G.

G. Stockhausen, U. Doll, T. Strehlau, and C. Willert, “Combined filtered Rayleigh and MIE scattering for simultaneous planar temperature and velocity measurements,” 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010).

Strehlau, T.

G. Stockhausen, U. Doll, T. Strehlau, and C. Willert, “Combined filtered Rayleigh and MIE scattering for simultaneous planar temperature and velocity measurements,” 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010).

Stricker, W.

Sutton, G.

G. Sutton, “The development of a combustion temperature standard for the calibration of optical diagnostic techniques,” Ph.D. dissertation (Cranfield University, 2005).

Tang, Z.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

ter Meulen, J. J.

Tölke, T.

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

Triebel, W.

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

D. Grebner, D. Müller, and W. Triebel, “Pulse to pulse wavelength switching of a narrowband excimer laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, Vol. 246 (1996).

Wegner, R.

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chim. Oggi 22, 27–29 (2004).

Willert, C.

G. Stockhausen, U. Doll, T. Strehlau, and C. Willert, “Combined filtered Rayleigh and MIE scattering for simultaneous planar temperature and velocity measurements,” 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010).

Wolfrum, J.

K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
[CrossRef]

Yalin, A. P.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

A. P. Yalin and R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).

Yeh, C. L.

H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

Zaidi, S. H.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

Zetterberg, J.

J. Zetterberg, “Development of laser-spectroscopic techniques for new detection schemes in combustion diagnostics,” Ph.D. dissertation (Lund University, 2008).

J. Zetterberg, Z. S. Li, and M. Alden, “Development of filtered Rayleigh scattering for real world temperature and fuel/air ratio imaging,” in Proceedings of 3rd European Combustion Meeting, Chania, Crete, Greece (2007).

Zhao, E.

H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

Annu. Rev. Fluid Mech. (1)

R. B. Miles and W. R. Lempert, “Quantitative flow visualization in unseeded flows,” Annu. Rev. Fluid Mech. 29, 285–326 (1997).
[CrossRef]

Appl. Opt. (5)

Chem. Eng. Technol. (1)

H. K. Kammler, L. Mädler, and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chem. Eng. Technol. 24, 583–596 (2001).
[CrossRef]

Chim. Oggi (1)

R. Wegner and S. E. Pratsinis, “Flame synthesis of nanoparticles,” Chim. Oggi 22, 27–29 (2004).

J. Aerosol Sci. (1)

L. Mädler, H. K. Kammler, R. Mueller, and S. E. Pratsinis, “Controlled synthesis of nanostructured particles by flame spray pyrolysis,” J. Aerosol Sci. 33, 369–389 (2002).
[CrossRef]

J. Geophys. Res. (1)

P. Gillet, A. Le Cleach, and M. Madon, “High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures,” J. Geophys. Res. 95, 21635–21655 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Burkert, D. Müller, and W. Paa, “Si and SiO detection in a HMDSO/propane/air flame using spatially resolved emission spectroscopy (OES),” J. Quant. Spectrosc. Radiat. Transfer 114, 101–108 (2013).
[CrossRef]

J. Therm. Sci. (1)

H. K. Ma, E. Zhao, C. L. Yeh, and K. M. Chung, “The formation of nano-size SiO2 thin film on an aluminum plate with hexamethyldisilazane (HMDSA) and hexamethyldisiloxane (HMDSO),” J. Therm. Sci. 12, 89–96 (2003).

J. Thermophys. Heat Transfer (1)

A. P. Yalin and R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14, 210–215 (2000).

Meas. Sci. Technol. (2)

G. S. Elliott, N. Glumac, and C. D. Carter, “Molecular filtered Rayleigh scattering applied to combustion,” Meas. Sci. Technol. 12, 452–466 (2001).
[CrossRef]

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol. 12, 442–451 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. Combust. Inst. (1)

K. Kohse-Höinghaus, R. S. Barlow, M. Alden, and J. Wolfrum, “Combustion at the focus: laser diagnostics and control,” Proc. Combust. Inst. 30, 89–123 (2005).
[CrossRef]

Proc. SPIE (2)

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).
[CrossRef]

D. Müller, W. Triebel, A. Bochmann, G. Schmidl, D. Eckardt, A. Burkert, J. Röper, and M. Schwerin, “Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF,” Proc. SPIE 5191, 66–74 (2003).

Prog. Aerosp. Sci. (1)

G. S. Elliott and T. J. Beutner, “Molecular filter based planar Doppler velocimetry,” Prog. Aerosp. Sci. 35, 799–845 (1999).
[CrossRef]

Other (11)

G. Sutton, “The development of a combustion temperature standard for the calibration of optical diagnostic techniques,” Ph.D. dissertation (Cranfield University, 2005).

R. B. Miles, J. N. Forkey, and W. R. Lempert, “Filtered Rayleigh scattering measurements in supersonic/hypersonic facilities,” in Proceeding of AIAA, Nashville, Tennessee, July 6–8, 1992, pp. 3892–3894.

T. Li, ed., Optical Fiber Communication (Academic, 1985).

A. Pfuch, T. Tölke, A. Heft, T. Richter, A. Niemann, A. Rechtenbach, and M. Frigge, Solar Energy: Research Technology and Application (Nova Science, 2008).

K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).

D. Grebner, D. Müller, and W. Triebel, “Pulse to pulse wavelength switching of a narrowband excimer laser,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, Vol. 246 (1996).

E. P. Hassel, “RAMan Spectra Efficient Simulation (RAMSES), simulation program for Raman spectra,” https://sites.google.com/site/egonsgwebsite/home/ra .

S. Gerstenkorn and P. Luc, “Atlas du spectre d’absorption de la molécule d’iode,” Editions du CNRS, Part III, Paris (1978).

J. Zetterberg, Z. S. Li, and M. Alden, “Development of filtered Rayleigh scattering for real world temperature and fuel/air ratio imaging,” in Proceedings of 3rd European Combustion Meeting, Chania, Crete, Greece (2007).

J. Zetterberg, “Development of laser-spectroscopic techniques for new detection schemes in combustion diagnostics,” Ph.D. dissertation (Lund University, 2008).

G. Stockhausen, U. Doll, T. Strehlau, and C. Willert, “Combined filtered Rayleigh and MIE scattering for simultaneous planar temperature and velocity measurements,” 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Principle of filtered Rayleigh scattering (FRS).

Fig. 2.
Fig. 2.

Experimental setup for 2D FRS, 1D Rayleigh, and Raman measurements.

Fig. 3.
Fig. 3.

Absorption lines of iodine in the tuning range of frequency-doubled Nd:YAG laser.

Fig. 4.
Fig. 4.

Propane/air flame in (a) side and (b) front view.

Fig. 5.
Fig. 5.

Species concentrations in the flame with a propane/air ratio of 120 measured by Raman scattering converted to mole fractions.

Fig. 6.
Fig. 6.

Transmission for several species in consideration of the Rayleigh scattering cross section related for air at 295 K.

Fig. 7.
Fig. 7.

Raman measurements compared with FRS measurements without and with correction of the Rayleigh cross section.

Fig. 8.
Fig. 8.

Raman spectrum (excitation at 354.8 nm) in 5 mm height above the burner with 1% HMDSO and a propane/air ratio of 120.

Fig. 9.
Fig. 9.

Temperature distributions (a) without HMDSO and (b) with 0.4% HMDSO at a propane/air ratio of 118 measured by FRS. The images are taken perpendicular to the long axis of the burner slit.

Fig. 10.
Fig. 10.

Scattered light intensities in dependence on the height above the burner and the HMDSO concentration.

Tables (1)

Tables Icon

Table 1. Refractive Indices and Differential Rayleigh Scattering Cross Sections at 532 nm of Relevant Combustion-Related Species

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C6H18OSi2+12O26CO2+9H2O+2SiO2.

Metrics