Abstract

The detection of trace elements present in nondegradable organic spent clay waste has been carried out using an optimized dual-pulsed laser induced breakdown spectrometer. The two laser pulses at 1064 and 266 nm were collinearly collimated and focused on the sample surface in order to enhance the signal intensity. The atomic transition lines at 568.8 nm (Na-I), 504.2 nm (Pb-II), 405.8 nm (Pb –I), 443.56 nm (Ca-I), 469.41 nm (S-I), 520.8 nm (Cr-I), 643 nm (Cd-I), and 928.1 nm (Cl-I) were used as marker wavelengths, and the concentrations of 688, 300, 204, 460, and 2440 ppm of Pb, S, Cd, Cr, and Cl, respectively, were detected in the 5% spent clay in the binder. The limits of detection of Pb, S, Cd, Cr, and Cl were estimated to be 6.7, 17.2, 6.5, 5.1, and 14.8 ppm, respectively, from the calibration curve for each element. In order to confirm the reliability of our system, the concentrations of the reported elements detected using our system were compared to the ones obtained with inductively coupled plasma emission spectroscopy and found to be in good agreement.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).
  2. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
    [CrossRef]
  3. E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
    [CrossRef]
  4. O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
    [CrossRef]
  5. A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta B 63, 305–311 (2008).
    [CrossRef]
  6. A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge University, 2006).
  7. M. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
    [CrossRef]
  8. J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
    [CrossRef]
  9. M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007).
    [CrossRef]
  10. S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
    [CrossRef]
  11. NIST Atomic spectra database, http://www.nist.gov/physlab/data/asd.cfm .
  12. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
    [CrossRef]
  13. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  14. C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
    [CrossRef]
  15. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  16. R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
    [CrossRef]
  17. G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).
  18. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
    [CrossRef]
  19. M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).
  20. A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
    [CrossRef]
  21. L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
    [CrossRef]
  22. A. A. I. Khalil, “Spectroscopic studies of UV lead plasmas produced by single and double-pulse laser excitation,” Laser Phys. 23, 015701 (2013).
    [CrossRef]
  23. B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
    [CrossRef]
  24. M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
    [CrossRef]
  25. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
  26. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
    [CrossRef]
  27. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
    [CrossRef]
  28. V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004).
    [CrossRef]
  29. D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010).
    [CrossRef]
  30. L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).
  31. Environmental Regulation Standards for Saudi Industries set by Royal Commission Al-Jubail, Saudi Arabia, http://www.rcjy.gov.sa .
  32. M. G. Natrellla, Experimental Statistics, NBS Handbook 91 (National Institute of Standards and Technology, 1963).

2013 (1)

A. A. I. Khalil, “Spectroscopic studies of UV lead plasmas produced by single and double-pulse laser excitation,” Laser Phys. 23, 015701 (2013).
[CrossRef]

2012 (2)

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

2011 (1)

A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
[CrossRef]

2010 (3)

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010).
[CrossRef]

2009 (3)

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

2008 (2)

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta B 63, 305–311 (2008).
[CrossRef]

2007 (3)

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007).
[CrossRef]

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).

2006 (1)

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

2005 (1)

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

2004 (3)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

2002 (3)

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
[CrossRef]

2001 (1)

1999 (1)

1997 (1)

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

1995 (1)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).

1991 (1)

Abedin, K. M.

A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
[CrossRef]

Ahmed, Z.

M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).

Al-amoudi, O. S. B.

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

Alnehmi, A. J.

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

Angel, S. M.

Brunetti, G.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Brust, J.

Butler, O. T.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Cairns, W. R. L.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Caneve, L.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

Capitelli, F.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Capitelli, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Carranza, J. E.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004).
[CrossRef]

Cavalli, P.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Ciucci, M.

Colao, F.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Cook, J. M.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
[CrossRef]

M. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Cremers, D. A.

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Cristoforetti, G.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
[CrossRef]

Cunat, J.

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Dastageer, A.

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

Davidson, C. M.

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

Day, J. A.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

De Giacomo, A.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

De Pascale, O.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Dell’Aglio, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Dong, C.

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

Doucet, F. R.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Dubessy, J.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

Duruibe, J. O.

J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).

Egwurugwu, J. N.

J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).

Eland, K. L.

Evans, E. H.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

Fantoni, R.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Ferrero, A.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta B 63, 305–311 (2008).
[CrossRef]

Fichet, P.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Fornarini, L.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

Fortes, F. J.

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Gammino, S.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Gaudiuso, R.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Gautier, C.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

Giuffrida, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Gondal, M. A.

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).

Hafeez, S.

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007).
[CrossRef]

Hahn, D. W.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004).
[CrossRef]

Haider, A. F. M. Y.

A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
[CrossRef]

Han, J.

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Hohreiter, V.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004).
[CrossRef]

Johnson, J. A.

D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010).
[CrossRef]

Khalil, A. A. I.

A. A. I. Khalil, “Spectroscopic studies of UV lead plasmas produced by single and double-pulse laser excitation,” Laser Phys. 23, 015701 (2013).
[CrossRef]

Krasa, J.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

L’Hermite, D.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

Lacour, J.

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Lacour, J.-L.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

Lasagna, J. J.

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

Laserna, J. J.

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta B 63, 305–311 (2008).
[CrossRef]

Laska, L.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Laville, S.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Lazic, V.

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Legnaioli, S.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Leis, F.

Lubna, R. S.

A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
[CrossRef]

Margarone, D.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Maslehuddin, M.

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

Maurice, S.

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Menut, D.

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

Miano, T. M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Miziolek, A.

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge University, 2006).

Mohammed, M. A.

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007).
[CrossRef]

Nasr, M. M.

M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).

Natrellla, M. G.

M. G. Natrellla, Experimental Statistics, NBS Handbook 91 (National Institute of Standards and Technology, 1963).

Neuhauser, R. E.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Niemax, K.

Niessner, R.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Noll, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).

Ogwuegbu, M. O. C.

J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).

Omenetto, N.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Palleschi, V.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
[CrossRef]

M. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge University, 2006).

Palmer, C.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

Pannev, U.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Peng, L.

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Petrucci, G. A.

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Picciotto, A.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Provenzano, M. R.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Rastelli, S.

Raynor, C. T.

D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010).
[CrossRef]

Rohlena, K.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Rony, M. A.

A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
[CrossRef]

Sabsabi, M.

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Salle, B.

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Salvetti, A.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

M. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Sattmann, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).

Schechter, I.

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge University, 2006).

Sdorra, W.

Senesi, G. S.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Senesi, N.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Shaikh, M. N.

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007).
[CrossRef]

Smith, C. M.

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

Stratis, D. N.

Sturm, V.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).

Su, M.

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

Sun, D.

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
[CrossRef]

M. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Torrisi, L.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Uebbing, J.

Vallebona, C.

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

Vors, E.

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Wiens, R. C.

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

Wiggins, D. L.

D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010).
[CrossRef]

Wolowski, J.

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Yamani, Z. H.

M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).

Zaccone, C.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Anal. Chim. Acta (2)

J. Cunat, F. J. Fortes, and J. J. Lasagna, “Real time and in situ determination of lead in road sediments using a man-portable laser-induced breakdown spectroscopy analyzer,” Anal. Chim. Acta 633, 38–42 (2009).
[CrossRef]

R. E. Neuhauser, U. Pannev, R. Niessner, G. A. Petrucci, P. Cavalli, and N. Omenetto, “On line and in-situ detection of lead aerosols by plasma-spectroscopy and laser-excited atomic fluorescence spectroscopy,” Anal. Chim. Acta 346, 37–48 (1997).
[CrossRef]

Appl. Spectrosc. (3)

Environ. Res. (1)

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009).

Geoderma (1)

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

J. Anal. At. Spectrom. (2)

E. H. Evans, J. A. Day, C. Palmer, and C. M. Smith, “Advances in atomic spectrometry and related techniques,” J. Anal. At. Spectrom. 25, 760–784 (2010).
[CrossRef]

O. T. Butler, W. R. L. Cairns, J. M. Cook, and C. M. Davidson, “Atomic spectrometry update. Environmental analysis,” J. Anal. At. Spectrom. 25, 103–141 (2010).
[CrossRef]

J. Environ. Sci. Health A (1)

M. A. Gondal, Z. Ahmed, M. M. Nasr, and Z. H. Yamani, “Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS,” J. Environ. Sci. Health A 44, 528–535 (2009).

J. Phys. D (1)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).

J. Phys. Sci. (1)

J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, “Heavy metal pollution and human biotoxic effects,” J. Phys. Sci. 2, 112–118 (2007).

Laser Phys. (1)

A. A. I. Khalil, “Spectroscopic studies of UV lead plasmas produced by single and double-pulse laser excitation,” Laser Phys. 23, 015701 (2013).
[CrossRef]

Opt. Laser Technol. (3)

M. A. Gondal, A. Dastageer, M. Maslehuddin, A. J. Alnehmi, and O. S. B. Al-amoudi, “Detection of sulphur in the reinforced concrete structures using a dual pulsed LIBS system,” Opt. Laser Technol. 44, 566–571 (2012).
[CrossRef]

A. F. M. Y. Haider, M. A. Rony, R. S. Lubna, and K. M. Abedin, “Detection of multiple elements in coal samples from Bangladesh by laser-induced breakdown spectroscopy,” Opt. Laser Technol. 43, 1405–1410 (2011).
[CrossRef]

L. Peng, D. Sun, M. Su, J. Han, and C. Dong, “Rapid analysis on the heavy metal content of spent zinc-manganese batteries by laser induced breakdown spectroscopy,” Opt. Laser Technol. 44, 2469–2475 (2012).
[CrossRef]

Phys. Plasmas (1)

D. L. Wiggins, C. T. Raynor, and J. A. Johnson, “Evidence of inverse Bremsstrahlung in laser enhanced laser-induced plasma,” Phys. Plasmas 17, 103303 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Torrisi, S. Gammino, A. Picciotto, D. Margarone, L. Laska, J. Krasa, K. Rohlena, and J. Wolowski, “Method for the calculation of electrical field in laser-generated plasma for ion stream production,” Rev. Sci. Instrum. 77, 03B708 (2006).

Spectrochim. Acta B (10)

B. Salle, J. Lacour, E. Vors, P. Fichet, S. Maurice, D. A. Cremers, and R. C. Wiens, “Laser-induced breakdown spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements,” Spectrochim. Acta B 59, 1413–1422 (2004).
[CrossRef]

C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, and J. Dubessy, “Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta B 60, 265–276 (2005).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta B 59, 723–735 (2004).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectrochim. Acta B 59, 327–333 (2004).
[CrossRef]

R. Fantoni, L. Caneve, F. Colao, L. Fornarini, and V. Lazic, “Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—a review,” Spectrochim. Acta B 63, 1097–1108 (2008).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
[CrossRef]

A. Ferrero and J. J. Laserna, “A theoretical study of atmospheric propagation of laser and return light for stand-off laser induced breakdown spectroscopy purposes,” Spectrochim. Acta B 63, 305–311 (2008).
[CrossRef]

M. N. Shaikh, S. Hafeez, and M. A. Mohammed, “Comparison of zinc and plasma parameters produced by laser-ablation,” Spectrochim. Acta B 62, 1311–1320 (2007).
[CrossRef]

S. Laville, M. Sabsabi, and F. R. Doucet, “Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy (LIBS) coupled with a linear multivariate calibration,” Spectrochim. Acta B 62, 1557–1566 (2007).
[CrossRef]

Other (4)

NIST Atomic spectra database, http://www.nist.gov/physlab/data/asd.cfm .

A. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamental and Applications (Cambridge University, 2006).

Environmental Regulation Standards for Saudi Industries set by Royal Commission Al-Jubail, Saudi Arabia, http://www.rcjy.gov.sa .

M. G. Natrellla, Experimental Statistics, NBS Handbook 91 (National Institute of Standards and Technology, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of dual-pulsed LIBS system. (b) Photographs of the insoluble organic powder, and pressed and sintered pellets. The pellets have a diameter of 35 mm.

Fig. 2.
Fig. 2.

DP-LIBS spectra showing different chemical elements present in the organic sample in the 200–620 nm and 630–970 nm wavelength regions.

Fig. 3.
Fig. 3.

DP-LIBS spectrum of the insoluble organic substance at five different concentrations of (a) lead at 504.2 nm ionic transition, (b) sodium at 568.8 nm atomic transition, and (c) cadmium at 643.8 nm atomic transition in the organic substance as markers 2000, 5000, 12,000, 15,000, and 50,000 ppm of Pb, Na, and Cd, respectively, by weight in organic substances.

Fig. 4.
Fig. 4.

Calibration curves for the detection of lead, sodium, calcium, sulphur, chromium, cadmium, and chlorine using ionic and atomic transition lines at Pb II 504.2 nm, Pb I 405.8 nm, Na I 568.8 nm, Ca I 443.56 nm, S I 469.41 nm, Cr I 520.8 nm, and Cd I 643.8 nm and 928.8 nm, respectively, as markers.

Tables (2)

Tables Icon

Table 1. Elements Detected in Spent Clay Collected from Saudi Companies and their Limit of Detection of DP-LIBS and Maximum Permissible Safe Limit

Tables Icon

Table 2. Concentration of Chemical Elements Detected in Insoluble Organic Substances Collected from Local Saudi Industries and Comparison of DP-LIBS with Standard Conventional Technique (ICP)a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LOD=3σB/S,
RSD%=(Standard deviation/mean)*100.
RA|d|+SD×t0.975nM×100,

Metrics