Abstract

We investigate the most appropriate way to optically characterize the materials and predict the spectral responses of metal–dielectric filters in the visible range. Special attention is given to thin silver layers that have a major impact on the filter’s spectral transmittance and reflectance. Two characterization approaches are compared, based either on single layers, or on multilayer stacks, in approaching the filter design. The second approach is preferred, because it gives the best way to predict filter characteristics. Meanwhile, it provides a stack model and dispersion relations that can be used for filter design optimization.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
    [CrossRef]
  2. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
    [CrossRef]
  3. H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).
  4. Y. T. Yoon and S. S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18, 5344–5349 (2010).
    [CrossRef]
  5. P. Gidon and G. Grand, “Optical filter matrix structure and associated image sensor,” U.S. patentWO2008/012235A1 (31January2008).
  6. P. Ma, F. Lin, and J. A. Dobrowolski, “Design and manufacture of metal/dielectric long-wavelength cutoff filters,” Appl. Opt. 50, C201–C209 (2011).
    [CrossRef]
  7. H. Savaloni and M. Firouzi-Arani, “Dependence of the optical properties of UHV deposited silver thin films on the deposition parameters and their relation to the nanostructure of the films,” Philos. Mag. 88(5), 711–736 (2008).
    [CrossRef]
  8. H. Savaloni and A. R. Khakpour, “Substrate temperature dependence on the optical properties of Cu and Ag thin films,” Eur. Phys. J. Appl. Phys. 31, 101–112 (2005).
    [CrossRef]
  9. K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering,” Sol. Energy Mater. Sol. Cells 95, 2352–2356 (2011).
    [CrossRef]
  10. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Continuous ellipsometric determination of the optical constants and thickness of a silver film during deposition,” Jpn. J. Appl. Phys. 8, 559–567 (1969).
    [CrossRef]
  11. B. T. Sullivan and K. L. Byrt, “Metal/dielectric transmission interference filters with low reflectance,” Appl. Opt. 34, 5684–5694 (1995).
    [CrossRef]
  12. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled by a broadband optical monitoring,” Opt. Express 16, 12008–12017 (2008).
    [CrossRef]
  13. J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, and M. C. Ferrera, “Use of information on the manufacture of samples for the optical characterization of multilayer through a global optimization,” Appl. Opt. 42, 1325–1329 (2003).
    [CrossRef]
  14. F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. Paris 3, 504–520 (2003).
  15. K. Ohta and H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films,” Appl. Opt. 29, 1952–1959 (1990).
    [CrossRef]
  16. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19, 13073–13080 (2011).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1997).
  18. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).
  19. C. Charton and M. Fahland, “Growth of Ag films on PET deposited by magnetron sputtering,” Vacuum 68, 65–73 (2002).
    [CrossRef]
  20. C. M. Herzinger and J. A. Woollam, “InP optical constants between 0.75 and 5.0  eV determined by variable angle spectroscopic ellipsometry,” J. Appl. Phys. 77, 1715–1724 (1995).
    [CrossRef]
  21. S. Yoshida, T. Yamaguchi, and A. Kinbara, “Change of the optical properties of aggregated silver films after deposition,” J. Opt. Soc. Am. 61, 463–469 (1971).
    [CrossRef]
  22. X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).
  23. K. Memarzadeh, J. A. Woollam, and A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings: determination of layer thicknesses and optical constants,” Proc. SPIE 0823, 54–63 (1987).
    [CrossRef]
  24. K. Memarzadeh, J. A. Woollam, and A. Belkind, “Variable angle of incidence spectroscopic ellipsometric (VASE) characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988).
    [CrossRef]
  25. F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
    [CrossRef]
  26. H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, and X. X. Zhang, “Analysis of the Drude model in metallic films,” Appl. Opt. 40, 6307–6311 (2001).
    [CrossRef]
  27. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  28. U. Kreibig, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  30. M. Held, O. Stenzel, S. Wilbrandt, N. Kaiser, and A. Tünnermann, “Manufacture and characterization of optical coatings with incorporated copper island films,” Appl. Opt. 51, 4436–4447 (2012).
    [CrossRef]
  31. T. Eisenhammer and F. Muggenthaler, “Deposition of dielectric and metallic materials on thin silver films: in situ measurement of reflectance and DC-resistance changes,” Proc. SPIE 2255, 508–518 (1994).
    [CrossRef]
  32. O. Stenzel and A. Macleod, “Metal–dielectric composite optical coatings: underlying physics, main models, characterization, design and application aspects,” Adv. Opt. Technol. 1, 463–481 (2012).

2012 (2)

O. Stenzel and A. Macleod, “Metal–dielectric composite optical coatings: underlying physics, main models, characterization, design and application aspects,” Adv. Opt. Technol. 1, 463–481 (2012).

M. Held, O. Stenzel, S. Wilbrandt, N. Kaiser, and A. Tünnermann, “Manufacture and characterization of optical coatings with incorporated copper island films,” Appl. Opt. 51, 4436–4447 (2012).
[CrossRef]

2011 (3)

2010 (1)

2008 (4)

B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Manufacturing of an absorbing filter controlled by a broadband optical monitoring,” Opt. Express 16, 12008–12017 (2008).
[CrossRef]

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

H. Savaloni and M. Firouzi-Arani, “Dependence of the optical properties of UHV deposited silver thin films on the deposition parameters and their relation to the nanostructure of the films,” Philos. Mag. 88(5), 711–736 (2008).
[CrossRef]

X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).

2005 (1)

H. Savaloni and A. R. Khakpour, “Substrate temperature dependence on the optical properties of Cu and Ag thin films,” Eur. Phys. J. Appl. Phys. 31, 101–112 (2005).
[CrossRef]

2003 (2)

2002 (1)

C. Charton and M. Fahland, “Growth of Ag films on PET deposited by magnetron sputtering,” Vacuum 68, 65–73 (2002).
[CrossRef]

2001 (1)

1998 (2)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

1995 (2)

C. M. Herzinger and J. A. Woollam, “InP optical constants between 0.75 and 5.0  eV determined by variable angle spectroscopic ellipsometry,” J. Appl. Phys. 77, 1715–1724 (1995).
[CrossRef]

B. T. Sullivan and K. L. Byrt, “Metal/dielectric transmission interference filters with low reflectance,” Appl. Opt. 34, 5684–5694 (1995).
[CrossRef]

1994 (1)

T. Eisenhammer and F. Muggenthaler, “Deposition of dielectric and metallic materials on thin silver films: in situ measurement of reflectance and DC-resistance changes,” Proc. SPIE 2255, 508–518 (1994).
[CrossRef]

1990 (1)

1988 (1)

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Variable angle of incidence spectroscopic ellipsometric (VASE) characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988).
[CrossRef]

1987 (1)

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings: determination of layer thicknesses and optical constants,” Proc. SPIE 0823, 54–63 (1987).
[CrossRef]

1986 (1)

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1971 (1)

1969 (1)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Continuous ellipsometric determination of the optical constants and thickness of a silver film during deposition,” Jpn. J. Appl. Phys. 8, 559–567 (1969).
[CrossRef]

Abelès, F.

F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. Paris 3, 504–520 (2003).

Badoil, B.

Belkind, A.

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Variable angle of incidence spectroscopic ellipsometric (VASE) characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988).
[CrossRef]

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings: determination of layer thicknesses and optical constants,” Proc. SPIE 0823, 54–63 (1987).
[CrossRef]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Bosch, S.

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

Byrt, K. L.

Cathelinaud, M.

Charton, C.

C. Charton and M. Fahland, “Growth of Ag films on PET deposited by magnetron sputtering,” Vacuum 68, 65–73 (2002).
[CrossRef]

Chen, L. Y.

Chen, Y. L.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Djurisic, A. B.

Dobrowolski, J. A.

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

Eisenhammer, T.

T. Eisenhammer and F. Muggenthaler, “Deposition of dielectric and metallic materials on thin silver films: in situ measurement of reflectance and DC-resistance changes,” Proc. SPIE 2255, 508–518 (1994).
[CrossRef]

Elazar, J. M.

Fahland, M.

C. Charton and M. Fahland, “Growth of Ag films on PET deposited by magnetron sputtering,” Vacuum 68, 65–73 (2002).
[CrossRef]

Ferré-Borrull, J.

Ferrera, M. C.

Firouzi-Arani, M.

H. Savaloni and M. Firouzi-Arani, “Dependence of the optical properties of UHV deposited silver thin films on the deposition parameters and their relation to the nanostructure of the films,” Philos. Mag. 88(5), 711–736 (2008).
[CrossRef]

Frey, L.

Gidon, P.

P. Gidon and G. Grand, “Optical filter matrix structure and associated image sensor,” U.S. patentWO2008/012235A1 (31January2008).

Grand, G.

P. Gidon and G. Grand, “Optical filter matrix structure and associated image sensor,” U.S. patentWO2008/012235A1 (31January2008).

Han, B.

X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).

Held, M.

Hérault, D.

Herzinger, C. M.

C. M. Herzinger and J. A. Woollam, “InP optical constants between 0.75 and 5.0  eV determined by variable angle spectroscopic ellipsometry,” J. Appl. Phys. 77, 1715–1724 (1995).
[CrossRef]

Huang, T. C.

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

Inaba, Y.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Ishida, H.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jurich, M.

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

Kaiser, N.

Kasano, M.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Kato, K.

K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering,” Sol. Energy Mater. Sol. Cells 95, 2352–2356 (2011).
[CrossRef]

Kay, E.

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

Khakpour, A. R.

H. Savaloni and A. R. Khakpour, “Substrate temperature dependence on the optical properties of Cu and Ag thin films,” Eur. Phys. J. Appl. Phys. 31, 101–112 (2005).
[CrossRef]

Kinbara, A.

S. Yoshida, T. Yamaguchi, and A. Kinbara, “Change of the optical properties of aggregated silver films after deposition,” J. Opt. Soc. Am. 61, 463–469 (1971).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Continuous ellipsometric determination of the optical constants and thickness of a silver film during deposition,” Jpn. J. Appl. Phys. 8, 559–567 (1969).
[CrossRef]

Koyama, S.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Kreibig, U.

U. Kreibig, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Lee, S. S.

Lemarchand, F.

Lequime, M.

Li, H. Y.

Li, J.

Lin, F.

Liu, H.

Ma, P.

Macleod, A.

O. Stenzel and A. Macleod, “Metal–dielectric composite optical coatings: underlying physics, main models, characterization, design and application aspects,” Adv. Opt. Technol. 1, 463–481 (2012).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).

Majewski, M. L.

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

Marty, M.

Memarzadeh, K.

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Variable angle of incidence spectroscopic ellipsometric (VASE) characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988).
[CrossRef]

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings: determination of layer thicknesses and optical constants,” Proc. SPIE 0823, 54–63 (1987).
[CrossRef]

Michailos, J.

Muggenthaler, F.

T. Eisenhammer and F. Muggenthaler, “Deposition of dielectric and metallic materials on thin silver films: in situ measurement of reflectance and DC-resistance changes,” Proc. SPIE 2255, 508–518 (1994).
[CrossRef]

Murata, T.

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

Ohta, K.

Omoto, H.

K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering,” Sol. Energy Mater. Sol. Cells 95, 2352–2356 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1997).

Parmigiani, F.

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

Parrein, P.

Pellé, C.

Perrin, J.

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

Raby, J.

Rakic, A. D.

Sancho-Parramon, J.

Savaloni, H.

H. Savaloni and M. Firouzi-Arani, “Dependence of the optical properties of UHV deposited silver thin films on the deposition parameters and their relation to the nanostructure of the films,” Philos. Mag. 88(5), 711–736 (2008).
[CrossRef]

H. Savaloni and A. R. Khakpour, “Substrate temperature dependence on the optical properties of Cu and Ag thin films,” Eur. Phys. J. Appl. Phys. 31, 101–112 (2005).
[CrossRef]

Scalora, M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

Shen, Z. C.

Stenzel, O.

O. Stenzel and A. Macleod, “Metal–dielectric composite optical coatings: underlying physics, main models, characterization, design and application aspects,” Adv. Opt. Technol. 1, 463–481 (2012).

M. Held, O. Stenzel, S. Wilbrandt, N. Kaiser, and A. Tünnermann, “Manufacture and characterization of optical coatings with incorporated copper island films,” Appl. Opt. 51, 4436–4447 (2012).
[CrossRef]

Sullivan, B. T.

Swalen, J. D.

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

Takamatsu, A.

K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering,” Sol. Energy Mater. Sol. Cells 95, 2352–2356 (2011).
[CrossRef]

Tomioka, T.

K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering,” Sol. Energy Mater. Sol. Cells 95, 2352–2356 (2011).
[CrossRef]

Tünnermann, A.

Wang, S. Y.

Wilbrandt, S.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Woollam, J. A.

C. M. Herzinger and J. A. Woollam, “InP optical constants between 0.75 and 5.0  eV determined by variable angle spectroscopic ellipsometry,” J. Appl. Phys. 77, 1715–1724 (1995).
[CrossRef]

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Variable angle of incidence spectroscopic ellipsometric (VASE) characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988).
[CrossRef]

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings: determination of layer thicknesses and optical constants,” Proc. SPIE 0823, 54–63 (1987).
[CrossRef]

Yamaguchi, T.

S. Yoshida, T. Yamaguchi, and A. Kinbara, “Change of the optical properties of aggregated silver films after deposition,” J. Opt. Soc. Am. 61, 463–469 (1971).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Continuous ellipsometric determination of the optical constants and thickness of a silver film during deposition,” Jpn. J. Appl. Phys. 8, 559–567 (1969).
[CrossRef]

Yang, X.

X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).

Yoon, Y. T.

Yoshida, S.

S. Yoshida, T. Yamaguchi, and A. Kinbara, “Change of the optical properties of aggregated silver films after deposition,” J. Opt. Soc. Am. 61, 463–469 (1971).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Continuous ellipsometric determination of the optical constants and thickness of a silver film during deposition,” Jpn. J. Appl. Phys. 8, 559–567 (1969).
[CrossRef]

Zhang, X. X.

Zhao, Q.

X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).

Zhao, X.

X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).

Zhou, S. M.

Adv. Opt. Technol. (1)

O. Stenzel and A. Macleod, “Metal–dielectric composite optical coatings: underlying physics, main models, characterization, design and application aspects,” Adv. Opt. Technol. 1, 463–481 (2012).

Ann. Phys. Paris (1)

F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. Paris 3, 504–520 (2003).

Appl. Opt. (7)

Eur. Phys. J. Appl. Phys. (1)

H. Savaloni and A. R. Khakpour, “Substrate temperature dependence on the optical properties of Cu and Ag thin films,” Eur. Phys. J. Appl. Phys. 31, 101–112 (2005).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Koyama, Y. Inaba, M. Kasano, and T. Murata, “A day and night vision MOS imager with robust photonic-crystal-based RGB and IR,” IEEE Trans. Electron Devices 55, 754–759 (2008).
[CrossRef]

J. Appl. Phys. (3)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998).
[CrossRef]

C. M. Herzinger and J. A. Woollam, “InP optical constants between 0.75 and 5.0  eV determined by variable angle spectroscopic ellipsometry,” J. Appl. Phys. 77, 1715–1724 (1995).
[CrossRef]

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Variable angle of incidence spectroscopic ellipsometric (VASE) characterization of TiO2/Ag/TiO2 optical coatings,” J. Appl. Phys. 64, 3407–3410 (1988).
[CrossRef]

J. Chin. Ceram. (1)

X. Yang, Q. Zhao, B. Han, and X. Zhao, “Oxidation mechanism of silver thin films under room temperature and atmospheric environment,” J. Chin. Ceram. 36, 954–959 (2008).

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Continuous ellipsometric determination of the optical constants and thickness of a silver film during deposition,” Jpn. J. Appl. Phys. 8, 559–567 (1969).
[CrossRef]

Opt. Express (3)

Philos. Mag. (1)

H. Savaloni and M. Firouzi-Arani, “Dependence of the optical properties of UHV deposited silver thin films on the deposition parameters and their relation to the nanostructure of the films,” Philos. Mag. 88(5), 711–736 (2008).
[CrossRef]

Phys. Rev. B (2)

F. Parmigiani, E. Kay, T. C. Huang, J. Perrin, M. Jurich, and J. D. Swalen, “Optical and electrical properties of thin silver films grown under ion bombardment,” Phys. Rev. B 33, 879–888 (1986).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Proc. SPIE (2)

T. Eisenhammer and F. Muggenthaler, “Deposition of dielectric and metallic materials on thin silver films: in situ measurement of reflectance and DC-resistance changes,” Proc. SPIE 2255, 508–518 (1994).
[CrossRef]

K. Memarzadeh, J. A. Woollam, and A. Belkind, “Ellipsometric study of ZnO/Ag/ZnO optical coatings: determination of layer thicknesses and optical constants,” Proc. SPIE 0823, 54–63 (1987).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

K. Kato, H. Omoto, T. Tomioka, and A. Takamatsu, “Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering,” Sol. Energy Mater. Sol. Cells 95, 2352–2356 (2011).
[CrossRef]

Vacuum (1)

C. Charton and M. Fahland, “Growth of Ag films on PET deposited by magnetron sputtering,” Vacuum 68, 65–73 (2002).
[CrossRef]

Other (5)

U. Kreibig, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

H. A. Macleod, Thin-Film Optical Filters III (Institute of Physics, 2001).

P. Gidon and G. Grand, “Optical filter matrix structure and associated image sensor,” U.S. patentWO2008/012235A1 (31January2008).

E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1997).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Comparison between initially designed and measured spectral responses of the RGB filters listed in Table 1.

Fig. 2.
Fig. 2.

TEM image of the blue filter described in Table 1.

Fig. 3.
Fig. 3.

AlN refractive index from single layer characterization on 20, 50, 80, and 350 nm thick single layers, and from multifilter characterization.

Fig. 4.
Fig. 4.

Refractive index of thin Ag layers sandwiched between 5 nm thick AlN layers. Reference data are plotted for comparison.

Fig. 5.
Fig. 5.

Extinction coefficient of 30 nm thick Ag layer sandwiched between 5 nm thick AlN layers. Reference data are plotted for comparison.

Fig. 6.
Fig. 6.

Fitted (dashed curves) versus measured (solid curves) transmittances (dark curves) and reflectances (light curves) of the filter stacks described in Tables 5 and 6. The fits were simultaneous for all the stacks with 17 nm Ag layers (Table 5, plots a–e), and for all the stacks with 40 nm Ag layers (Table 6, plots f–h), respectively.

Fig. 7.
Fig. 7.

Refractive index of thin Ag layers in multilayer stacks. Single layer measurements are plotted for comparison.

Fig. 8.
Fig. 8.

Comparison between simulated and measured spectral responses of RGB filters of Table 1. Simulations use material parameters deduced from single layer characterization.

Fig. 9.
Fig. 9.

Comparison between simulated and measured spectral responses of RGB filters listed in Table 1. Simulations use material parameters deduced from multilayer characterization.

Tables (6)

Tables Icon

Table 1. Layer Thicknesses (nm) of RGB Filters Targeted in the Design

Tables Icon

Table 2. Sensitivity of RGB Filter Spectral Responses to Material Optical Parameters and Layer Thicknesses

Tables Icon

Table 3. XRR Measurement of AlN Single Layers

Tables Icon

Table 4. XRR Measurement of Ag Single Layers Sandwiched between Thin AlN Layers

Tables Icon

Table 5. Stacks for Multi-Sample Simultaneous Characterization of AlN and 17 nm Thick Ag Layers (Thicknesses are given in nm)

Tables Icon

Table 6. Stacks for Multi-Sample Simultaneous Characterization of 40 nm Thick Ag Layers (Thicknesses are given in nm)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n=a+bλ2,
hXRR(nm)=0.93hprofilo(nm)+1.1.
ε=εEp2E(E+iγ),
ε=f1·Ep2(E012E2)+i·G1·E,

Metrics