Abstract

An optical filter with tunable wavelength and bandwidth is demonstrated using two phototunable cholesteric liquid crystals (CLCs) configured in a reflection mode. In this mode, incident light is first reflected by one Azo-chiral-doped CLC and then by another one. The tuning mechanism, which is based on the pitch modulation of the CLCs that contain an Azo-chiral dopant, can be controlled by two pumping laser beams. The central wavelength can be tuned from 510 to 628 nm, and the bandwidth can be changed from 13 to 79 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87, 011106 (2005).
    [CrossRef]
  2. S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
    [CrossRef]
  3. C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
    [CrossRef]
  4. A. Y.-G. Fuh, Z.-H. Wu, K.-T. Cheng, C.-K. Liu, and Y.-D. Chen, “Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals,” Opt. Express 21, 21840–21846 (2013).
    [CrossRef]
  5. J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optical tunable/switchable omnidirectionally spherical microlaser based on dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765–15776 (2013).
    [CrossRef]
  6. Y.-H. Huang and S.-C. Zhang, “Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals,” Opt. Lett. 36, 4563–4565 (2011).
    [CrossRef]
  7. Y.-H. Huang and S.-C. Zhang, “Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals,” Appl. Opt. 51, 5780–5784 (2012).
    [CrossRef]
  8. Y.-H. Huang, Q. Sun, and S.-C. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystals,” Opt. Eng. 52, 044003 (2013).
    [CrossRef]
  9. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
    [CrossRef]
  10. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
    [CrossRef]
  11. S.-T. Wu, A. Y.-G. Fuh, S.-J. Ho, and M.-S. Li, “Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic,” Appl. Phys. Express (submitted).
  12. S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”
  13. R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystals by rapid thermal processing,” Appl. Phys. Lett. 92, 163304 (2008).
    [CrossRef]
  14. A. Bagal and C.-H. Chang, “Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography,” Opt. Lett. 38, 2531–2534 (2013).
    [CrossRef]

2013

2012

Y.-H. Huang and S.-C. Zhang, “Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals,” Appl. Opt. 51, 5780–5784 (2012).
[CrossRef]

C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
[CrossRef]

2011

2010

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010).
[CrossRef]

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

2008

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystals by rapid thermal processing,” Appl. Phys. Lett. 92, 163304 (2008).
[CrossRef]

2007

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

2005

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87, 011106 (2005).
[CrossRef]

Bagal, A.

Chang, C.-H.

Chen, Y.-D.

Chen, Y.-S.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

Cheng, K.-T.

A. Y.-G. Fuh, Z.-H. Wu, K.-T. Cheng, C.-K. Liu, and Y.-D. Chen, “Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals,” Opt. Express 21, 21840–21846 (2013).
[CrossRef]

C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
[CrossRef]

Doane, J. W.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Fuh, A. Y.-G.

A. Y.-G. Fuh, Z.-H. Wu, K.-T. Cheng, C.-K. Liu, and Y.-D. Chen, “Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals,” Opt. Express 21, 21840–21846 (2013).
[CrossRef]

C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
[CrossRef]

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87, 011106 (2005).
[CrossRef]

S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”

S.-T. Wu, A. Y.-G. Fuh, S.-J. Ho, and M.-S. Li, “Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic,” Appl. Phys. Express (submitted).

Green, L.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Ho, S.-J.

S.-T. Wu, A. Y.-G. Fuh, S.-J. Ho, and M.-S. Li, “Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic,” Appl. Phys. Express (submitted).

Hoke, L.

Hrozhyk, U. A.

Hsieh, M.-H.

Huang, S.-Y.

J.-D. Lin, M.-H. Hsieh, G.-J. Wei, T.-S. Mo, S.-Y. Huang, and C.-R. Lee, “Optical tunable/switchable omnidirectionally spherical microlaser based on dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant,” Opt. Express 21, 15765–15776 (2013).
[CrossRef]

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

Huang, W.-L.

C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
[CrossRef]

Huang, Y.-H.

Jau, H.-C.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

Khan, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Kimball, B. R.

Lee, C.-R.

Li, M.-S.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”

S.-T. Wu, A. Y.-G. Fuh, S.-J. Ho, and M.-S. Li, “Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic,” Appl. Phys. Express (submitted).

Li, Q.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Lin, J.-D.

Lin, T.-H.

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87, 011106 (2005).
[CrossRef]

Liu, C.-H.

S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”

Liu, C.-K.

A. Y.-G. Fuh, Z.-H. Wu, K.-T. Cheng, C.-K. Liu, and Y.-D. Chen, “Direct optical switching of bistable cholesteric textures in chiral azobenzene-doped liquid crystals,” Opt. Express 21, 21840–21846 (2013).
[CrossRef]

C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
[CrossRef]

Liu, J.-H.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”

Mo, T.-S.

Moritake, H.

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystals by rapid thermal processing,” Appl. Phys. Lett. 92, 163304 (2008).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystals by rapid thermal processing,” Appl. Phys. Lett. 92, 163304 (2008).
[CrossRef]

Serak, S. V.

Shinpo, T.

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystals by rapid thermal processing,” Appl. Phys. Lett. 92, 163304 (2008).
[CrossRef]

Shiyanovskaya, I.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Steeves, D. M.

Sun, Q.

Y.-H. Huang, Q. Sun, and S.-C. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystals,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

Tabiryan, N. V.

Urbas, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Venkataraman, N.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

Wei, G.-J.

Wu, S.-T.

S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”

S.-T. Wu, A. Y.-G. Fuh, S.-J. Ho, and M.-S. Li, “Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic,” Appl. Phys. Express (submitted).

Wu, Z.-H.

Yang, P.-C.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

Zhang, S.-C.

Appl. Opt.

Appl. Phys. Lett.

T.-H. Lin and A. Y.-G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87, 011106 (2005).
[CrossRef]

R. Ozaki, T. Shinpo, and H. Moritake, “Improvement of orientation of planar cholesteric liquid crystals by rapid thermal processing,” Appl. Phys. Lett. 92, 163304 (2008).
[CrossRef]

J. Am. Chem. Soc.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 12908–12909 (2007).
[CrossRef]

J. Appl. Phys.

C.-K. Liu, W.-L. Huang, A. Y.-G. Fuh, and K.-T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo-doped cholesteric liquid crystals,” J. Appl. Phys. 111, 103114 (2012).
[CrossRef]

Opt. Commun.

S.-Y. Huang, Y.-S. Chen, H.-C. Jau, M.-S. Li, J.-H. Liu, P.-C. Yang, and A. Y.-G. Fuh, “Biphotonic effect-induced phase transition in dye-doped cholesteric liquid crystals and their applications,” Opt. Commun. 283, 1726–1731 (2010).
[CrossRef]

Opt. Eng.

Y.-H. Huang, Q. Sun, and S.-C. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystals,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S.-T. Wu, A. Y.-G. Fuh, S.-J. Ho, and M.-S. Li, “Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic,” Appl. Phys. Express (submitted).

S.-T. Wu, A. Y.-G. Fuh, C.-H. Liu, J.-H. Liu, and M.-S. Li are preparing a manuscript to be called “Study of optically controllable gray-level diffraction from a BCT photonic crystal based on azo-dye-doped HPDLC.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of an optical filter based on two Azo-chiral-doped CLC (ACdCLC) cells.

Fig. 2.
Fig. 2.

Absorption spectra of Azo-chiral-doped LC during illumination with (a) purple light (0.3mW/cm2); (b) green light (0.3mW/cm2); (c) purple light (1.2mW/cm2), and (d) green light (1.2mW/cm2) at various durations.

Fig. 3.
Fig. 3.

Variations in the reflection band edge of ACdCLCs during illumination with (a) purple light (0.25mW/cm2, red shifting) and (b) green light (0.2mW/cm2, blue shifting) at various durations. Insets show the corresponding reflection spectra. (c) Calculated HTP during illumination with purple/green light at various durations.

Fig. 4.
Fig. 4.

Variations in reflection spectra of the optical filter during illumination with (a) purple light (0.25mW/cm2) and (b) green light (0.2mW/cm2) at various durations.

Fig. 5.
Fig. 5.

Tuning range of the optical filter with the narrowest FWHM.

Metrics