Abstract

We propose a new parameter, Qp,l2, based on cross-sectional intensity distribution to distinguish Laguerre–Gaussian (LG) beams. Theoretically, Qp,l2 shows an approximately linear dependence on the topological index in higher LG modes. Compared with the similar parameter Qp,l proposed by Long et al. [Opt. Lett. 38, 3047 (2013)] recently, our experimental result demonstrates that the approximate linearity of Qp,l2 brings out the advantage in characterizing higher topological indices. In addition, as more intensity data is used in calculating Qp,l2, the experimental error is diminished naturally. Thus, Qp,l2 can be used to easily and accurately characterize LG modes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef]
  2. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef]
  3. R. W. Boyd and C. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31, 440–442 (1977).
    [CrossRef]
  4. M. Abbas, T. Kostiuk, and K. Ogilvie, “Infrared upconversion for astronomical applications,” Appl. Opt. 15, 961–970 (1976).
    [CrossRef]
  5. M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [CrossRef]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  7. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [CrossRef]
  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [CrossRef]
  9. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light,” Phys. Rev. Lett. 88, 013601 (2001).
    [CrossRef]
  10. V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
    [CrossRef]
  11. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
    [CrossRef]
  12. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
    [CrossRef]
  13. M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
    [CrossRef]
  14. M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
    [CrossRef]
  15. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
    [CrossRef]
  16. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
    [CrossRef]
  17. H. Sztul and R. Alfano, “Double-slit interference with Laguerre–Gaussian beams,” Opt. Lett. 31, 999–1001 (2006).
    [CrossRef]
  18. R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
    [CrossRef]
  19. G. C. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101, 100801 (2008).
    [CrossRef]
  20. J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
    [CrossRef]
  21. M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
    [CrossRef]
  22. A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
    [CrossRef]
  23. G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
    [CrossRef]
  24. J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
    [CrossRef]
  25. I. Basistiy, V. Slyusar, M. Soskin, M. Vasnetsov, and A. Y. Bekshaev, “Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam,” Opt. Lett. 28, 1185–1187 (2003).
    [CrossRef]
  26. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
    [CrossRef]

2013 (4)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
[CrossRef]

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

2012 (3)

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

2010 (2)

J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

2009 (1)

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

2008 (1)

G. C. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101, 100801 (2008).
[CrossRef]

2006 (1)

2004 (4)

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
[CrossRef]

2003 (1)

2002 (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

2001 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light,” Phys. Rev. Lett. 88, 013601 (2001).
[CrossRef]

1996 (2)

M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef]

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[CrossRef]

1994 (1)

M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[CrossRef]

1992 (1)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

1977 (1)

R. W. Boyd and C. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31, 440–442 (1977).
[CrossRef]

1976 (1)

Abbas, M.

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Alfano, R.

Allen, L.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[CrossRef]

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Aolita, L.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

Arlt, J.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[CrossRef]

Barnett, S. M.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Bartlett, S. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Basistiy, I.

Beijersbergen, M.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Beijersbergen, M. W.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

G. C. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101, 100801 (2008).
[CrossRef]

Bekshaev, A. Y.

Berkhout, G. C.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

G. C. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101, 100801 (2008).
[CrossRef]

Boyd, R. W.

R. W. Boyd and C. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31, 440–442 (1977).
[CrossRef]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

Chavez-Cerda, S.

J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Courtial, J.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
[CrossRef]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

D’Ambrosio, V.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

Dalton, R. B.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

De Martini, F.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

Dennis, M. R.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
[CrossRef]

Dholakia, K.

A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Enger, J.

M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Fonseca, E.

J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Franke-Arnold, S.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Friese, M.

M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef]

Gao, H.

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

Gibson, G.

Gilchrist, A.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Harris, M.

M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[CrossRef]

Harvey, M. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Heckenberg, N. R.

M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef]

Hickmann, J.

J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Hill, C.

M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[CrossRef]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Karimi, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Kostiuk, T.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

Langford, N. K.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Lavery, M. P.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

Leach, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
[CrossRef]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Li, F.

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

Liu, R.

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

Long, J.

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

Marrucci, L.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

Mazilu, M.

A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light,” Phys. Rev. Lett. 88, 013601 (2001).
[CrossRef]

Mourka, A.

A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Nagali, E.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

O’Brien, J. L.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Ogilvie, K.

Padgett, M.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[CrossRef]

Padgett, M. J.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
[CrossRef]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

Pas’ko, V.

Piccirillo, B.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

Pryde, G. J.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Rubinsztein-Dunlop, H.

M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef]

Santamato, E.

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

Sciarrino, F.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

Simpson, N.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[CrossRef]

Skeldon, K.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

Slussarenko, S.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

Slyusar, V.

Soares, W.

J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

Soskin, M.

Spreeuw, R.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Sztul, H.

Tapster, P.

M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[CrossRef]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light,” Phys. Rev. Lett. 88, 013601 (2001).
[CrossRef]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light,” Phys. Rev. Lett. 88, 013601 (2001).
[CrossRef]

Townes, C.

R. W. Boyd and C. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31, 440–442 (1977).
[CrossRef]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Vasnetsov, M.

Vaughan, J.

M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[CrossRef]

Vettenburg, T.

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Walborn, S. P.

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

Wang, F.

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Wang, Y.

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

White, A. G.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Woerdman, J.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

Wright, E.

A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
[CrossRef]

Wright, E. M.

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Zhang, P.

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

J. Long, R. Liu, Y. Wang, F. Wang, P. Zhang, H. Gao, and F. Li, “Evaluating Laguerre–Gaussian beams with an invariant parameter,” Opt. Lett. 38, 3047–3049 (2013).
[CrossRef]

Am. J. Phys. (1)

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. W. Boyd and C. Townes, “An infrared upconverter for astronomical imaging,” Appl. Phys. Lett. 31, 440–442 (1977).
[CrossRef]

M. Mazilu, A. Mourka, T. Vettenburg, E. M. Wright, and K. Dholakia, “Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum,” Appl. Phys. Lett. 100, 231115 (2012).
[CrossRef]

J. Opt. (1)

R. Liu, J. Long, F. Wang, Y. Wang, P. Zhang, H. Gao, and F. Li, “Characterizing the phase profile of a vortex beam with angular-double-slit interference,” J. Opt. 15, 125712 (2013).
[CrossRef]

Nat. Commun. (1)

V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961 (2012).
[CrossRef]

Nat. Photonics (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[CrossRef]

Nature (1)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004).
[CrossRef]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (3)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef]

M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef]

M. Harris, C. Hill, P. Tapster, and J. Vaughan, “Laser modes with helical wave fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[CrossRef]

Phys. Rev. Lett. (8)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light,” Phys. Rev. Lett. 88, 013601 (2001).
[CrossRef]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004).
[CrossRef]

E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009).
[CrossRef]

G. C. Berkhout and M. W. Beijersbergen, “Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Phys. Rev. Lett. 101, 100801 (2008).
[CrossRef]

J. Hickmann, E. Fonseca, W. Soares, and S. Chavez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010).
[CrossRef]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002).
[CrossRef]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[CrossRef]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[CrossRef]

Sci. Rep. (1)

A. Mourka, M. Mazilu, E. Wright, and K. Dholakia, “Modal characterization using principal component analysis: application to Bessel, higher-order Gaussian beams and their superposition,” Sci. Rep. 3, 1422 (2013).
[CrossRef]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Relative intensity distribution of LG beams with p=0, l=1. rm is the radius of the circle where the intensity is maximal value; r1 and r2 are the radii of the two circles where the intensity is half-maximum, respectively.

Fig. 2.
Fig. 2.

Theoretical adjacent difference of Qp,l and Qp,l2 with different p and l. ΔQp,l=Qp,l+1Qp,l and ΔQp,l2=Qp,l+12Qp,l2.

Fig. 3.
Fig. 3.

Theoretical values of Qp,l2 and Qp,l, respectively. Triangles show experimental values of Qp,l2 and circles show experimental values of Qp,l. Results come from LG modes with p=0 and l ranging from 1 to 6.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=Cplω(z)2[2r2ω(z)2]|l|[Lp|l|(2r2ω(z)2)]2e2r2ω(z)2=Cplω(z)2(2t2)|l|[Lp|l|(2t2)]2e2t2=Cplω(z)2fpl(t),
Qp,l=r1r2r1,
Qp,l=tmtbta.
dIdt=2p!π(p+|l|)1ω2dfpl(t)dt=0.
Qp,l2=S1S1+S22S1S2,

Metrics