Abstract

We report on a laser diode-end-pumped continuously tunable single frequency Tm, Ho:LLF laser near room temperature. For transmission of 5%, the maximum single frequency output power of 221 mW at 2064.4 nm was obtained by using two uncoated etalons. The single frequency Tm, Ho:LLF laser operated on the fundamental transverse mode with an M2 factor of 1.13, and the output frequency could be tuned continuously near 1.5 GHz by angle tuning only of the 1 mm thick etalon. Furthermore, the influence of output coupler transmission on the laser performance was also investigated. The single frequency laser can be used as a seed laser for coherent Doppler lidar and differential absorption lidar systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1  μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef]
  2. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, CW 2.066  μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37, 8460–8476 (1998).
    [CrossRef]
  3. J. Yu, B. C. Trieu, E. A. Modin, U. P. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1  J/pulse Q-switched 2  μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
    [CrossRef]
  4. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.
  5. D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).
  6. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
    [CrossRef]
  7. C. He and D. K. Killinger, “Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-μm microchip Ho, Tm:YAG laser,” Opt. Lett. 19, 396–398 (1994).
    [CrossRef]
  8. I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
    [CrossRef]
  9. B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
    [CrossRef]
  10. V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm, Ho:YLF; Tm, Ho:LuLF; and Tm, Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20, 1829–1837 (2003).
    [CrossRef]
  11. M. E. Storm and W. W. Rohrbach, “Single-longitudinal-mode lasing of Ho:Tm:YAG at 2.091  μm,” Appl. Opt. 28, 4965–4967 (1989).
    [CrossRef]
  12. C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
    [CrossRef]
  13. R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
    [CrossRef]
  14. Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
    [CrossRef]
  15. C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150  mW single-frequency output power at 2.02  μm,” Electron. Lett. 35, 152–153 (1999).
    [CrossRef]
  16. B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3  W of single-frequency output power at 2.09  μm from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett. 33, 2161–2163 (2008).
    [CrossRef]
  17. L. Wang, C. Q. Gao, M. W. Gao, and Y. Li, “Resonantly pumped monolithic nonplanar Ho:YAG ring laser with high-power single-frequency laser output at 2122  nm,” Opt. Express 21, 9541–9546 (2013).
    [CrossRef]
  18. J. Li, S. H. Yang, C. M. Zhao, H. Y. Zhang, and W. Xie, “Coupled-cavity concept applied to a highly compact single-frequency laser operating in the 2  μm spectral region,” Appl. Opt. 50, 1329–1332 (2011).
    [CrossRef]
  19. C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
    [CrossRef]
  20. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, “Frequency stabilization of a Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664–3669 (2000).
    [CrossRef]
  21. L. Wang, C. Q. Gao, M. W. Gao, L. Liu, and F. Y. Yue, “Diode-pumped 2  μm tunable single-frequency Tm:LuAG laser with intracavity etalons,” Appl. Opt. 52, 1272–1275 (2013).
    [CrossRef]
  22. S. W. Henderson and C. P. Hale, “Tunable single-longitudinal-mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
    [CrossRef]
  23. B. T. McGuckin, R. T. Menzies, and C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 32, 2082–2084 (1993).
    [CrossRef]
  24. X. L. Zhang, Y. L. Ju, and Y. Z. Wang, “Diode-end-pumped room temperature Tm, Ho:YLF lasers,” Opt. Express 13, 4056–4063 (2005).
    [CrossRef]
  25. B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011).
    [CrossRef]
  26. X. L. Zhang, S. Zhang, C. Y. Wang, L. Li, J. Q. Zhao, and J. H. Cui, “Orthogonally polarized dual-wavelength single-longitudinal-mode Tm, Ho:LLF laser,” Opt. Express 21, 22699–22704 (2013).
    [CrossRef]
  27. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
    [CrossRef]
  28. M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10  Hz,” Opt. Lett. 20, 872–874 (1995).
    [CrossRef]
  29. H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
    [CrossRef]
  30. X. L. Zhang, L. Yu, S. Zhang, L. Li, J. Q. Zhao, and J. H. Cui, “Diode-pumped continuous wave and passively Q-switched Tm, Ho:LLF laser at 2  μm,” Opt. Express 21, 12629–12634 (2013).
    [CrossRef]

2013

2011

J. Li, S. H. Yang, C. M. Zhao, H. Y. Zhang, and W. Xie, “Coupled-cavity concept applied to a highly compact single-frequency laser operating in the 2  μm spectral region,” Appl. Opt. 50, 1329–1332 (2011).
[CrossRef]

B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011).
[CrossRef]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

2010

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

2008

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3  W of single-frequency output power at 2.09  μm from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett. 33, 2161–2163 (2008).
[CrossRef]

2007

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).

2006

2005

2004

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

2003

2001

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

2000

1999

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150  mW single-frequency output power at 2.02  μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

1998

1995

1994

1993

1991

1990

1989

Asai, K.

Bai, Y.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho:Tm:YLiF4 laser at 10  Hz,” Opt. Lett. 20, 872–874 (1995).
[CrossRef]

Brinkmann, R.

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).

Bromberger, H.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

Budni, P. A.

Chen, F.

B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011).
[CrossRef]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

Chen, S.

Chicklis, E. P.

Cui, J. H.

Dekorsy, T.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

Dharamsi, A. N.

Duan, X. M.

Elder, I. F.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Esproles, C.

Fang, D.

Fitzgerald, C. M.

Freitag, I.

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150  mW single-frequency output power at 2.02  μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.

Gao, C.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Gao, C. Q.

Gao, M.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Gao, M. W.

Hale, C. P.

Hara, H.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

He, C.

Heinecke, D.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

Henderson, S. W.

Huffaker, A. V.

Jani, M. G.

Ju, Y. L.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3  W of single-frequency output power at 2.09  μm from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett. 33, 2161–2163 (2008).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

X. L. Zhang, Y. L. Ju, and Y. Z. Wang, “Diode-end-pumped room temperature Tm, Ho:YLF lasers,” Opt. Express 13, 4056–4063 (2005).
[CrossRef]

Kavaya, M. J.

Ke, L.

Keller, R.

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).

Killinger, D. K.

Koch, G. J.

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.

Lemons, M. L.

Li, G.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

Li, J.

Li, L.

Li, Y.

Lin, Z.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Liu, L.

Lockard, G. E.

Magee, J. R.

McCarthy, J. C.

McGuckin, B. T.

Menzies, R. T.

Miller, C. A.

Mizutani, K.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Modin, E. A.

Mosto, J. R.

Murray, K. E.

Nagasawa, C.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Nakajima, H.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Naranjo, F. L.

Ott, V.

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).

Payne, M. J. P.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Petros, M.

J. Yu, B. C. Trieu, E. A. Modin, U. P. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1  J/pulse Q-switched 2  μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
[CrossRef]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Petzar, P. J.

Pomeranz, L. A.

Rohrbach, W. W.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.

Singh, U. N.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Singh, U. P.

Song, C. W.

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Storm, M. E.

Sudesh, V.

Suzuki, T.

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Svelto, C.

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150  mW single-frequency output power at 2.02  μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

Taczak, T. M.

Theisen-Kunde, D.

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).

Trieu, B. C.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Wang, C. Y.

Wang, L.

Wang, Q.

B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011).
[CrossRef]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Wang, R.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Wang, Y. Z.

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3  W of single-frequency output power at 2.09  μm from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett. 33, 2161–2163 (2008).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

X. L. Zhang, Y. L. Ju, and Y. Z. Wang, “Diode-end-pumped room temperature Tm, Ho:YLF lasers,” Opt. Express 13, 4056–4063 (2005).
[CrossRef]

Wang, Z. G.

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Wu, C. T.

B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011).
[CrossRef]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Xie, W.

Xu, J.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

Yang, K. J.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

Yang, S. H.

Yao, B. Q.

Yu, J.

J. Yu, B. C. Trieu, E. A. Modin, U. P. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1  J/pulse Q-switched 2  μm solid-state laser,” Opt. Lett. 31, 462–464 (2006).
[CrossRef]

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

Yu, L.

Yue, F. Y.

Zhang, C. H.

B. Q. Yao, F. Chen, C. H. Zhang, Q. Wang, C. T. Wu, and X. M. Duan, “Room temperature single-frequency output from a diode-pumped Tm, Ho:YAP laser,” Opt. Lett. 36, 1554–1556 (2011).
[CrossRef]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

Zhang, H. Y.

Zhang, S.

Zhang, X. L.

Zhang, Y.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

Zhang, Y. J.

Zhao, C. M.

Zhao, G. J.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G. J. Zhao, “7.3  W of single-frequency output power at 2.09  μm from an Ho:YAG monolithic nonplanar ring laser,” Opt. Lett. 33, 2161–2163 (2008).
[CrossRef]

Zhao, J. Q.

Zheng, L. H.

H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J. Zhao, “Comparative investigations on continuous wave operation of a-cut and b-cut Tm, Ho: YAlO3 lasers at room temperature,” Opt. Express 19, 06505–06513 (2011).
[CrossRef]

Zhou, R. L.

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

Appl. Opt.

Electron. Lett.

C. Svelto and I. Freitag, “Room-temperature Tm: YAG ring laser with 150  mW single-frequency output power at 2.02  μm,” Electron. Lett. 35, 152–153 (1999).
[CrossRef]

J. Appl. Phys.

B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys.

R. L. Zhou, Y. L. Ju, C. T. Wu, Z. G. Wang, and Y. Z. Wang, “A single-longitudinal-mode CW 0.25  mm Tm, Ho:GdVO4 microchip laser,” Laser Phys. 20, 1320–1323 (2010).
[CrossRef]

B. Q. Yao, F. Chen, C. T. Wu, Q. Wang, G. Li, C. H. Zhang, Y. Z. Wang, and Y. L. Ju, “A comparative study on diode-pumped continuous wave Tm:Ho:YVO4 and Tm:Ho:GdVO4 lasers,” Laser Phys. 21, 468–471 (2011).
[CrossRef]

Laser Phys. Lett.

Y. Zhang, C. Gao, M. Gao, Z. Lin, and R. Wang, “A diode pumped tunable single-frequency Tm: YAG laser using twisted-mode technique,” Laser Phys. Lett. 7, 17–20 (2010).
[CrossRef]

C. T. Wu, Y. L. Ju, Z. G. Wang, Q. Wang, C. W. Song, and Y. Z. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett. 5, 793–796 (2008).
[CrossRef]

Med. Laser Appl.

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Potential of a new cw 2  μm laser scalpel for laparoscopic surgery,” Med. Laser Appl. 22, 139–145 (2007).

Opt. Commun.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara, and K. Mizutani, “Characteristics of single longitudinal mode oscillation of the 2  μm Tm, Ho:YLF microchip laser,” Opt. Commun. 200, 315–319 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Other

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2  μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (Intech, 2010), pp. 471–500.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the SLM Tm, Ho:LLF laser.

Fig. 2.
Fig. 2.

Output power as a function of absorbed pump power: (a) multimode oscillation and (b) SLM operation.

Fig. 3.
Fig. 3.

Laser wavelengths of Tm, Ho:LLF laser: (a) multimode oscillation and (b) SLM operation.

Fig. 4.
Fig. 4.

F-P spectra of the Tm, Ho:LLF laser: (a) free-running multimode oscillation and (b) SLM operation with 0.1 and 1 mm etalons.

Fig. 5.
Fig. 5.

Laser frequency continuous tunability with the 1 mm etalon.

Fig. 6.
Fig. 6.

Beam radius as a function of the distance from the focusing lens at the maximum output power for the transmission of 5%. The inset shows the transverse beam profile.

Metrics