Abstract

Near-field goniometric measurements are employed to determine the photometric characteristics of light sources, i.e., the spatial and angular distribution of the emitted light. To this end, a complex measurement system consisting of a goniometer and a CCD-based imaging photometer is employed. In order to gain insight into the measurement system and to enable characterization of the whole measurement setup, we propose to apply a computer model to conduct virtual experiments. Within the computer model, the current state of all parts of the virtual experiment can be easily controlled. The reliability of the computer model is demonstrated by a comparison to actual measurement results. As an example for the application of the virtual experiment, we present an analysis of the impact of axial malpositions of the goniometer and camera.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Riemann, F. Schmidt, and R. Poschmann, “Verfahren und Anordnung zur Messung der Lichtstärkeverteilung von Leuchten und Lampen,” German patent4,110,574 (30March, 1991).
  2. I. E. Ashdown, “Near-field photometric method and apparatus,” U.S. patent5,252,036 (12October, 1993).
  3. I. Moreno, C.-C. Sun, and R. Ivanov, “Far-field condition for light-emitting diode arrays,” Appl. Opt. 48, 1190–1197 (2009).
    [CrossRef]
  4. C.-C. Sun, W.-T. Chien, I. Moreno, C.-C. Hsieh, and Y.-C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
    [CrossRef]
  5. X. Liu, W. Cai, X. Lei, X. Du, and W. Chen, “Far-field distance for surface light source with different luminous area,” Appl. Opt. 52, 1629–1635 (2013).
    [CrossRef]
  6. M. Lopez, K. Bredemeier, F. Schmidt, and A. Sperling, “Near-field goniophotometer: a metrological challenge,” in Proceedings of the Simposia de Metrologia, Santiago de Querétaro, Mexico, 27–29 October (2010).
  7. I. E. Ashdown and M. Salsbury, “A near-field goniospectrometer for LED measurements,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2006), paper TuD5.
  8. G. Sauter, “Goniometry of luminescent diodes,” Metrologia 28, 239–242 (1991).
    [CrossRef]
  9. I. Moreno and C.-C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20, 075306 (2009).
    [CrossRef]
  10. M. Burmen, F. Pernus, and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. 19, 122002 (2008).
    [CrossRef]
  11. M. Burmen, F. Pernus, and B. Likar, “Automated optical quality inspection of light emitting diodes,” Meas. Sci. Technol. 17, 1372–1378 (2006).
    [CrossRef]
  12. R. McCluney, Introduction to Radiometry and Photometry (Artech House, 1994).
  13. International Commission On Illumination, International Lighting Vocabulary (CIE 17.4), Bureau Central de la Comm. Electrotechnique Internationale, 1987.
  14. I. E. Ashdown, “Course notes—Realistic input for realistic images,” in ACM SIGGRAPH’95, Los Angeles, 6–11 August, 1995, pp. 1–15.
  15. I. E. Ashdown, “Near-field photometry in practice,” in IESNA Annual Conference Technical Papers (1993), pp. 413–425.
  16. I. E. Ashdown, “Near-field photometry: a new approach,” J. Illumin. Eng. Soc. 22, 163–180 (1993).
    [CrossRef]
  17. K. Bredemeier, R. Poschman, and F. Schmidt, “Development of luminous objects with measured ray data,” Laser+Photonik 02, 20–24 (2007).
  18. M. Shaw and T. Goodman, “Array-based goniospectroradiometer for measurement of spectral radiant intensity and spectral total flux of light sources,” Appl. Opt. 47, 2637–2647 (2008).
    [CrossRef]
  19. M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
    [CrossRef]
  20. M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, “Accurate light source acquisition and rendering,” in ACM SIGGRAPH, San Diego, 27–31 July (2003), pp. 621–630.
  21. G. Booch, Object-Oriented Analysis and Design with Applications, 2nd ed. (Benjamin-Cummings, 1994).
  22. B. Meyer, Object-Oriented Software Construction (Prentice-Hall, 1988).
  23. H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
    [CrossRef]
  24. G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.
  25. I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
    [CrossRef]
  26. M. Schulz, G. Ehret, M. Stavridis, and C. Elster, “Characteristics of the new deflectometric flatness reference at PTB,” in Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (2010), pp. 108–111.
  27. C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
    [CrossRef]
  28. A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
    [CrossRef]
  29. H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Pearson Education, 2014).
  30. G. B. Arfken, H.-J. Veber, and F. E. Harris, Mathematical Methods for Physicists, a Comprehensive Guide, 7th ed. (Academic, 2013).
  31. J. Vince, Mathematics for Computer Graphics (Springer, 2010).
  32. U. Krüger and F. Schmidt, “The impact of cooling on CCD-based camera systems in the field of image luminance measuring devices,” Metrologia 46, S252–S259 (2009).
    [CrossRef]
  33. I. Moreno and C.-C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16, 1808–1819 (2008).
  34. W. Cai, X. Liu, X. Lei, and W. Chen, “Analysis of misalignment-induced measurement error for goniophotometry of light-emitting diode arrays,” Appl. Opt. 52, 8381–8387 (2013).
    [CrossRef]
  35. F. Gassmann, “Entwicklung eines Verfahrens zum Vergleich von Lichtstärkeverteilungskörpern (Abschlussarbeit),” Technische Universität Ilmenau (Fakultät Maschinenbau Fachgebiet Lichttechnik, 2013), p. 67.

2013

2012

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

2011

A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
[CrossRef]

2010

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

2009

U. Krüger and F. Schmidt, “The impact of cooling on CCD-based camera systems in the field of image luminance measuring devices,” Metrologia 46, S252–S259 (2009).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

I. Moreno, C.-C. Sun, and R. Ivanov, “Far-field condition for light-emitting diode arrays,” Appl. Opt. 48, 1190–1197 (2009).
[CrossRef]

C.-C. Sun, W.-T. Chien, I. Moreno, C.-C. Hsieh, and Y.-C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
[CrossRef]

I. Moreno and C.-C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20, 075306 (2009).
[CrossRef]

2008

2007

K. Bredemeier, R. Poschman, and F. Schmidt, “Development of luminous objects with measured ray data,” Laser+Photonik 02, 20–24 (2007).

2006

M. Burmen, F. Pernus, and B. Likar, “Automated optical quality inspection of light emitting diodes,” Meas. Sci. Technol. 17, 1372–1378 (2006).
[CrossRef]

1993

I. E. Ashdown, “Near-field photometry: a new approach,” J. Illumin. Eng. Soc. 22, 163–180 (1993).
[CrossRef]

1991

G. Sauter, “Goniometry of luminescent diodes,” Metrologia 28, 239–242 (1991).
[CrossRef]

Arfken, G. B.

G. B. Arfken, H.-J. Veber, and F. E. Harris, Mathematical Methods for Physicists, a Comprehensive Guide, 7th ed. (Academic, 2013).

Ashdown, I. E.

I. E. Ashdown, “Near-field photometry: a new approach,” J. Illumin. Eng. Soc. 22, 163–180 (1993).
[CrossRef]

I. E. Ashdown, “Near-field photometric method and apparatus,” U.S. patent5,252,036 (12October, 1993).

I. E. Ashdown and M. Salsbury, “A near-field goniospectrometer for LED measurements,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2006), paper TuD5.

I. E. Ashdown, “Course notes—Realistic input for realistic images,” in ACM SIGGRAPH’95, Los Angeles, 6–11 August, 1995, pp. 1–15.

I. E. Ashdown, “Near-field photometry in practice,” in IESNA Annual Conference Technical Papers (1993), pp. 413–425.

Baer, G.

I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
[CrossRef]

Booch, G.

G. Booch, Object-Oriented Analysis and Design with Applications, 2nd ed. (Benjamin-Cummings, 1994).

Bredemeier, K.

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

K. Bredemeier, R. Poschman, and F. Schmidt, “Development of luminous objects with measured ray data,” Laser+Photonik 02, 20–24 (2007).

M. Lopez, K. Bredemeier, F. Schmidt, and A. Sperling, “Near-field goniophotometer: a metrological challenge,” in Proceedings of the Simposia de Metrologia, Santiago de Querétaro, Mexico, 27–29 October (2010).

Bremer, H.

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

Burmen, M.

M. Burmen, F. Pernus, and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. 19, 122002 (2008).
[CrossRef]

M. Burmen, F. Pernus, and B. Likar, “Automated optical quality inspection of light emitting diodes,” Meas. Sci. Technol. 17, 1372–1378 (2006).
[CrossRef]

Cai, W.

Chen, W.

Chien, W.-T.

Du, X.

Ehret, G.

G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.

M. Schulz, G. Ehret, M. Stavridis, and C. Elster, “Characteristics of the new deflectometric flatness reference at PTB,” in Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (2010), pp. 108–111.

Elster, C.

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

M. Schulz, G. Ehret, M. Stavridis, and C. Elster, “Characteristics of the new deflectometric flatness reference at PTB,” in Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (2010), pp. 108–111.

G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.

Fortmeier, I.

I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
[CrossRef]

Gassmann, F.

F. Gassmann, “Entwicklung eines Verfahrens zum Vergleich von Lichtstärkeverteilungskörpern (Abschlussarbeit),” Technische Universität Ilmenau (Fakultät Maschinenbau Fachgebiet Lichttechnik, 2013), p. 67.

Goesele, M.

M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, “Accurate light source acquisition and rendering,” in ACM SIGGRAPH, San Diego, 27–31 July (2003), pp. 621–630.

Goldstein, H.

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Pearson Education, 2014).

Goodman, T.

Granier, X.

M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, “Accurate light source acquisition and rendering,” in ACM SIGGRAPH, San Diego, 27–31 July (2003), pp. 621–630.

Harris, F. E.

G. B. Arfken, H.-J. Veber, and F. E. Harris, Mathematical Methods for Physicists, a Comprehensive Guide, 7th ed. (Academic, 2013).

Heidrich, W.

M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, “Accurate light source acquisition and rendering,” in ACM SIGGRAPH, San Diego, 27–31 July (2003), pp. 621–630.

Hsieh, C.-C.

Ivanov, R.

Krey, S.

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

Krüger, U.

U. Krüger and F. Schmidt, “The impact of cooling on CCD-based camera systems in the field of image luminance measuring devices,” Metrologia 46, S252–S259 (2009).
[CrossRef]

Lei, X.

Likar, B.

M. Burmen, F. Pernus, and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. 19, 122002 (2008).
[CrossRef]

M. Burmen, F. Pernus, and B. Likar, “Automated optical quality inspection of light emitting diodes,” Meas. Sci. Technol. 17, 1372–1378 (2006).
[CrossRef]

Liu, X.

Lo, Y.-C.

Lopez, M.

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

M. Lopez, K. Bredemeier, F. Schmidt, and A. Sperling, “Near-field goniophotometer: a metrological challenge,” in Proceedings of the Simposia de Metrologia, Santiago de Querétaro, Mexico, 27–29 October (2010).

McCluney, R.

R. McCluney, Introduction to Radiometry and Photometry (Artech House, 1994).

Meyer, B.

B. Meyer, Object-Oriented Software Construction (Prentice-Hall, 1988).

Moreno, I.

Pernus, F.

M. Burmen, F. Pernus, and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. 19, 122002 (2008).
[CrossRef]

M. Burmen, F. Pernus, and B. Likar, “Automated optical quality inspection of light emitting diodes,” Meas. Sci. Technol. 17, 1372–1378 (2006).
[CrossRef]

Poole, C. P.

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Pearson Education, 2014).

Poschman, R.

K. Bredemeier, R. Poschman, and F. Schmidt, “Development of luminous objects with measured ray data,” Laser+Photonik 02, 20–24 (2007).

Poschmann, R.

M. Riemann, F. Schmidt, and R. Poschmann, “Verfahren und Anordnung zur Messung der Lichtstärkeverteilung von Leuchten und Lampen,” German patent4,110,574 (30March, 1991).

Riemann, M.

M. Riemann, F. Schmidt, and R. Poschmann, “Verfahren und Anordnung zur Messung der Lichtstärkeverteilung von Leuchten und Lampen,” German patent4,110,574 (30March, 1991).

Rohrbeck, N.

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

Ruprecht, A.

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

Safko, J. L.

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Pearson Education, 2014).

Salsbury, M.

I. E. Ashdown and M. Salsbury, “A near-field goniospectrometer for LED measurements,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2006), paper TuD5.

Sauter, G.

G. Sauter, “Goniometry of luminescent diodes,” Metrologia 28, 239–242 (1991).
[CrossRef]

Schmähling, F.

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

Schmidt, F.

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

U. Krüger and F. Schmidt, “The impact of cooling on CCD-based camera systems in the field of image luminance measuring devices,” Metrologia 46, S252–S259 (2009).
[CrossRef]

K. Bredemeier, R. Poschman, and F. Schmidt, “Development of luminous objects with measured ray data,” Laser+Photonik 02, 20–24 (2007).

M. Lopez, K. Bredemeier, F. Schmidt, and A. Sperling, “Near-field goniophotometer: a metrological challenge,” in Proceedings of the Simposia de Metrologia, Santiago de Querétaro, Mexico, 27–29 October (2010).

M. Riemann, F. Schmidt, and R. Poschmann, “Verfahren und Anordnung zur Messung der Lichtstärkeverteilung von Leuchten und Lampen,” German patent4,110,574 (30March, 1991).

Schulz, M.

I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
[CrossRef]

A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
[CrossRef]

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.

M. Schulz, G. Ehret, M. Stavridis, and C. Elster, “Characteristics of the new deflectometric flatness reference at PTB,” in Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (2010), pp. 108–111.

Seidel, H.-P.

M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, “Accurate light source acquisition and rendering,” in ACM SIGGRAPH, San Diego, 27–31 July (2003), pp. 621–630.

Shaw, M.

Sperling, A.

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

M. Lopez, K. Bredemeier, F. Schmidt, and A. Sperling, “Near-field goniophotometer: a metrological challenge,” in Proceedings of the Simposia de Metrologia, Santiago de Querétaro, Mexico, 27–29 October (2010).

Stavridis, M.

I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
[CrossRef]

A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

M. Schulz, G. Ehret, M. Stavridis, and C. Elster, “Characteristics of the new deflectometric flatness reference at PTB,” in Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (2010), pp. 108–111.

G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.

Sun, C.-C.

Veber, H.-J.

G. B. Arfken, H.-J. Veber, and F. E. Harris, Mathematical Methods for Physicists, a Comprehensive Guide, 7th ed. (Academic, 2013).

Veron, C.

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

Vince, J.

J. Vince, Mathematics for Computer Graphics (Springer, 2010).

Walzel, M.

A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

Weichert, C.

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

Wiegmann, A.

I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
[CrossRef]

A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.

Appl. Opt.

J. Illumin. Eng. Soc.

I. E. Ashdown, “Near-field photometry: a new approach,” J. Illumin. Eng. Soc. 22, 163–180 (1993).
[CrossRef]

Laser+Photonik

K. Bredemeier, R. Poschman, and F. Schmidt, “Development of luminous objects with measured ray data,” Laser+Photonik 02, 20–24 (2007).

Meas. Sci. Technol.

I. Moreno and C.-C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20, 075306 (2009).
[CrossRef]

M. Burmen, F. Pernus, and B. Likar, “LED light sources: a survey of quality-affecting factors and methods for their assessment,” Meas. Sci. Technol. 19, 122002 (2008).
[CrossRef]

M. Burmen, F. Pernus, and B. Likar, “Automated optical quality inspection of light emitting diodes,” Meas. Sci. Technol. 17, 1372–1378 (2006).
[CrossRef]

Metrologia

M. Lopez, K. Bredemeier, N. Rohrbeck, C. Veron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, S141–S145 (2012).
[CrossRef]

G. Sauter, “Goniometry of luminescent diodes,” Metrologia 28, 239–242 (1991).
[CrossRef]

U. Krüger and F. Schmidt, “The impact of cooling on CCD-based camera systems in the field of image luminance measuring devices,” Metrologia 46, S252–S259 (2009).
[CrossRef]

Opt. Express

Precis. Eng.

A. Wiegmann, M. Stavridis, M. Walzel, and M. Schulz, “Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments,” Precis. Eng. 35, 183–190 (2011).
[CrossRef]

Proc. SPIE

H. Bremer, F. Schmähling, C. Elster, S. Krey, A. Ruprecht, and M. Schulz, “Simple methods for alignment of line distance sensor arrays,” Proc. SPIE 7718, 77181M (2010).
[CrossRef]

I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, and G. Baer, “Sensitivity analysis of tilted-wave interferometer asphere measurements using virtual experiments,” Proc. SPIE 8789, 878907 (2013).
[CrossRef]

C. Weichert, M. Stavridis, M. Walzel, C. Elster, A. Wiegmann, and M. Schulz, “A model based approach to reference-free straightness measurement at the nanometer comparator,” Proc. SPIE 7390, 73900O (2009).
[CrossRef]

Other

F. Gassmann, “Entwicklung eines Verfahrens zum Vergleich von Lichtstärkeverteilungskörpern (Abschlussarbeit),” Technische Universität Ilmenau (Fakultät Maschinenbau Fachgebiet Lichttechnik, 2013), p. 67.

M. Schulz, G. Ehret, M. Stavridis, and C. Elster, “Characteristics of the new deflectometric flatness reference at PTB,” in Proceedings of the 10th International Conference of the European Society for Precision Engineering and Nanotechnology (2010), pp. 108–111.

G. Ehret, M. Schulz, A. Wiegmann, M. Stavridis, and C. Elster, “Flatness measurements with the deflectometric flatness reference at PTB,” in Proceedings of the 11th International Conference of the European Society for Precision Engineering and Nanotechnology (2011), pp. 154–157.

H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. (Pearson Education, 2014).

G. B. Arfken, H.-J. Veber, and F. E. Harris, Mathematical Methods for Physicists, a Comprehensive Guide, 7th ed. (Academic, 2013).

J. Vince, Mathematics for Computer Graphics (Springer, 2010).

M. Riemann, F. Schmidt, and R. Poschmann, “Verfahren und Anordnung zur Messung der Lichtstärkeverteilung von Leuchten und Lampen,” German patent4,110,574 (30March, 1991).

I. E. Ashdown, “Near-field photometric method and apparatus,” U.S. patent5,252,036 (12October, 1993).

R. McCluney, Introduction to Radiometry and Photometry (Artech House, 1994).

International Commission On Illumination, International Lighting Vocabulary (CIE 17.4), Bureau Central de la Comm. Electrotechnique Internationale, 1987.

I. E. Ashdown, “Course notes—Realistic input for realistic images,” in ACM SIGGRAPH’95, Los Angeles, 6–11 August, 1995, pp. 1–15.

I. E. Ashdown, “Near-field photometry in practice,” in IESNA Annual Conference Technical Papers (1993), pp. 413–425.

M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel, “Accurate light source acquisition and rendering,” in ACM SIGGRAPH, San Diego, 27–31 July (2003), pp. 621–630.

G. Booch, Object-Oriented Analysis and Design with Applications, 2nd ed. (Benjamin-Cummings, 1994).

B. Meyer, Object-Oriented Software Construction (Prentice-Hall, 1988).

M. Lopez, K. Bredemeier, F. Schmidt, and A. Sperling, “Near-field goniophotometer: a metrological challenge,” in Proceedings of the Simposia de Metrologia, Santiago de Querétaro, Mexico, 27–29 October (2010).

I. E. Ashdown and M. Salsbury, “A near-field goniospectrometer for LED measurements,” in International Optical Design Conference, Technical Digest (CD) (Optical Society of America, 2006), paper TuD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scheme of the measurement setup of near-field goniophotometry. A camera is moved on a sphere around the light source; for each position of the camera and each pixel, the discrete part of the luminous flux is measured.

Fig. 2.
Fig. 2.

Model of the luminaire (geometry: sphere in mm). (a) Luminous emittance distribution. (b) Lambertian exponent distribution. (c) Emitted luminance, shown as discrete rays (dependent on the position and direction).

Fig. 3.
Fig. 3.

(a) Luminance intensity distribution of a luminaire with cylindrical geometry and Lambertian characteristic (Lambertian exponent equal to 1). (b) C-planes of the luminous intensity distribution at 0° (solid), 15° (dashed), 25° (dotted–dashed), and 65° (dotted).

Fig. 4.
Fig. 4.

Camera snapshot (a) without camera-related distortions; (b) with camera-related distortions (defocus, shading, DSNU, pixel nonlinearity).

Fig. 5.
Fig. 5.

(a) Asymmetrical behavior of the measured luminous intensity distribution. (b) Model deviations in every data point; using a symmetrical Lambertian model results in large deviations in regions with high asymmetrical behavior and in regions where the model assumptions of a Lambertian model are not fulfilled.

Fig. 6.
Fig. 6.

(a) Measured luminous intensity distribution. (b) Simulated luminous intensity distribution.

Fig. 7.
Fig. 7.

C-planes at 0°, 15°, 25°, and 65° through the measured (solid lines), simulated (dashed lines), and modeled (dotted line) luminous intensity distribution.

Fig. 8.
Fig. 8.

Luminous intensity distributions (normalized): (left) measured; (right) simulated (first row, scenario 1; second row, scenario 2).

Fig. 9.
Fig. 9.

Relative deviation related to total luminous flux (left) and luminous intensity distribution using Eq. (5) (right) when axial out of position effect is taken into account. (top row) Translation of the theta arm of the goniometer about the x axis. (center row) Rotation of the camera axis about the y axis. (bottom row) translation of the CCD about the x axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(θ,ϕ)=s1,s2ΔΦi,j(x,y,z,θs1,ϕs2)ΔΩ(θk,ϕl),(θs1,ϕs2)ΔΩ(θk,ϕl)
Φtotal=i,jΔΦi,j(x,y,z,θ,ϕ).
t(p⃗)=k=1ml=1n(Iθk,ϕldataIθk,ϕlmodel(p⃗))2,
Iθk,ϕlmodel(p⃗)=p1cos(θp2)p3+p4exp(((θp5)/p6)2)+p7exp(((θp8)/p9)2),
d(I1(θ,ϕ),I2(θ,ϕ))==k=1ml=1n(I1(θ,ϕ)I2(θ,ϕ))2·Ωk,lk=1ml=1nΩk,l,

Metrics