Abstract

A two-dimensional/three-dimensional (2D/3D) display system is presented based on a twisted-nematic cell integrated polymeric microlens array. This device structure has the advantages of fast response time and low operation voltage. The crosstalk of the system is analyzed in detail and two approaches are proposed to reduce the crosstalk: a double lens system and the prism approach. Illuminance distribution analysis proves these two approaches can dramatically reduce crosstalk, thus improving image quality.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50, H87–H115 (2011).
    [CrossRef]
  2. G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14, 421–426 (2006).
    [CrossRef]
  3. C. van Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
    [CrossRef]
  4. H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21, 7916–7925 (2013).
    [CrossRef]
  5. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
    [CrossRef]
  6. H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006).
    [CrossRef]
  7. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S.-T. Wu, “Fast switching liquid crystals for color-sequential LCDs,” J. Display Technol. 3, 250–252 (2007).
    [CrossRef]
  8. G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
    [CrossRef]
  9. H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  10. Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8, 650–655 (2012).
    [CrossRef]
  11. J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
    [CrossRef]
  12. S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
    [CrossRef]
  13. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Display Technol. 7, 674–678 (2011).
    [CrossRef]
  14. R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,” Proc. SPIE 5874, 587406 (2005).
    [CrossRef]
  15. A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
    [CrossRef]
  16. K. H. Lee, Y. Park, H. Lee, S. K. Yoon, and S. K. Kim, “Crosstalk reduction in auto-stereoscopic projection 3D display system,” Opt. Express 20, 19757–19768 (2012).
    [CrossRef]
  17. X. Li, Q. Wang, Y. Tao, D. Li, and A. Wang, “Crosstalk reduction in multi-view autostereoscopic three-dimensional display based on lenticular sheet,” Chin. Opt. Lett. 9, 021001 (2011).
    [CrossRef]
  18. T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
    [CrossRef]
  19. W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35, 4127–4129 (2010).
    [CrossRef]
  20. A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
    [CrossRef]
  21. C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphep, C.-T. Hsieh, and S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48, 3446–3454 (2009).
    [CrossRef]
  22. H. Kim, J. Hahn, and H. J. Choi, “Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array,” Appl. Opt. 50, 1534–1540 (2011).
    [CrossRef]
  23. Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2-D/3D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
    [CrossRef]
  24. C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
    [CrossRef]
  25. J. H. Jung, J. Yeom, J. Hong, K. Hong, S. W. Min, and B. Lee, “Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display,” Opt. Express 19, 20468–20482 (2011).
    [CrossRef]
  26. M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
    [CrossRef]
  27. M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26, 2035–2043 (2009).
    [CrossRef]

2013 (2)

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21, 7916–7925 (2013).
[CrossRef]

2012 (5)

K. H. Lee, Y. Park, H. Lee, S. K. Yoon, and S. K. Kim, “Crosstalk reduction in auto-stereoscopic projection 3D display system,” Opt. Express 20, 19757–19768 (2012).
[CrossRef]

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8, 650–655 (2012).
[CrossRef]

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
[CrossRef]

A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
[CrossRef]

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

2011 (6)

2010 (3)

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35, 4127–4129 (2010).
[CrossRef]

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2-D/3D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
[CrossRef]

C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
[CrossRef]

2009 (2)

2008 (1)

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

2007 (1)

2006 (3)

H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14, 11292–11298 (2006).
[CrossRef]

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14, 421–426 (2006).
[CrossRef]

2005 (1)

R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,” Proc. SPIE 5874, 587406 (2005).
[CrossRef]

2003 (1)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

1999 (1)

C. van Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
[CrossRef]

1988 (1)

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Aho, E. A.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Ayras, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Casner, G. E.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Chellappan, K. V.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Chen, C.-H.

C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphep, C.-T. Hsieh, and S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48, 3446–3454 (2009).
[CrossRef]

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Chen, C.-W.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8, 650–655 (2012).
[CrossRef]

C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
[CrossRef]

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2-D/3D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
[CrossRef]

Chen, N.

Chen, Y.

Choi, H. J.

Chuang, S.-C.

C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphep, C.-T. Hsieh, and S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48, 3446–3454 (2009).
[CrossRef]

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Dabrowski, R.

de Boer, D. K. G.

Erden, E.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Fan, Y.-H.

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Gauza, S.

Giridhar, M. S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Haddock, J. N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Hahn, J.

Harrold, J.

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14, 421–426 (2006).
[CrossRef]

Haus, E. M.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Herzog, A.

Hong, J.

Hong, K.

Honkanen, S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Hsieh, C.-T.

Hsu, S.-C.

Hsu, T.-H.

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Huang, H.-H.

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Huang, J.-F.

C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
[CrossRef]

Huang, Y.-C.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8, 650–655 (2012).
[CrossRef]

C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
[CrossRef]

Huang, Y.-P.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Display Technol. 8, 650–655 (2012).
[CrossRef]

C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
[CrossRef]

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2-D/3D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
[CrossRef]

C.-H. Chen, Y.-P. Huang, S.-C. Chuang, C.-L. Wu, H.-P. D. Shieh, W. Mphep, C.-T. Hsieh, and S.-C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48, 3446–3454 (2009).
[CrossRef]

Ishinabe, T.

Jacobsen, G. A.

R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,” Proc. SPIE 5874, 587406 (2005).
[CrossRef]

Johnson, R. B.

R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,” Proc. SPIE 5874, 587406 (2005).
[CrossRef]

Jung, J. H.

Kim, H.

Kim, S. K.

Kim, Y.

Kippelen, B.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Krijn, M. P. C. M.

Kuo, M.-H.

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Lee, B.

Lee, H.

Lee, K. H.

Li, D.

Li, D. H.

A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
[CrossRef]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35, 4127–4129 (2010).
[CrossRef]

Li, G. Q.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Li, X.

Li, X. F.

A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
[CrossRef]

Liao, L.-Y.

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2-D/3D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
[CrossRef]

Liu, Y.

Marttila, C. A.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Mathine, D. L.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Meredith, G. R.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Min, S. W.

Mphep, W.

Nirmal, M.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Park, J. H.

Park, Y.

Peyghambarian, N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Piecek, W.

Rao, L.

Ren, H.

Schwabacher, A. M.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Schwabacher, C. O.

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

Schwiegerling, J.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Shieh, H.-P. D.

Sluijter, M.

Sun, J.

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

Surman, P.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Tao, Y.

Tsai, C.-H.

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Urbach, H. P.

Urey, H.

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Valley, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

van Berkel, C.

C. van Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
[CrossRef]

Wang, A.

Wang, A. H.

A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
[CrossRef]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35, 4127–4129 (2010).
[CrossRef]

Wang, Q.

Wang, Q. H.

A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
[CrossRef]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35, 4127–4129 (2010).
[CrossRef]

Williby, G.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Woodgate, G. J.

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14, 421–426 (2006).
[CrossRef]

Woods, A. J.

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
[CrossRef]

Wu, C. S.

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Wu, C.-L.

Wu, S. T.

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Wu, S.-T.

Xu, S.

Yeom, J.

Yoon, S. K.

Zhao, W. X.

Zhu, X.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

J. Sun, S. Xu, H. Ren, and S.-T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett. 102, 161106 (2013).
[CrossRef]

S. T. Wu and C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Chin. Opt. Lett. (1)

J. Display Technol. (3)

J. Electron. Imaging (1)

A. J. Woods, “Crosstalk in stereoscopic displays: a review,” J. Electron. Imaging 21, 040902 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Soc. Inf. Disp. (2)

Y.-P. Huang, L.-Y. Liao, and C.-W. Chen, “2-D/3D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
[CrossRef]

G. J. Woodgate and J. Harrold, “Key design issues for autostereoscopic 2-D/3-D displays,” J. Soc. Inf. Disp. 14, 421–426 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Optik (1)

A. H. Wang, Q. H. Wang, X. F. Li, and D. H. Li, “Combined lenticular lens for autostereoscopic three dimensional display,” Optik 123, 827–830 (2012).
[CrossRef]

Proc. IEEE (1)

H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the art in stereoscopic and autostereoscopic displays,” Proc. IEEE 99, 540–555 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

G. Q. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. USA 103, 6100–6104 (2006).
[CrossRef]

Proc. SPIE (2)

C. van Berkel, “Image preparation for 3D LCD,” Proc. SPIE 3639, 84–91 (1999).
[CrossRef]

R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,” Proc. SPIE 5874, 587406 (2005).
[CrossRef]

SID Int. Symp. Dig. Tech. Pap. (3)

C.-W. Chen, Y.-C. Huang, Y.-P. Huang, and J.-F. Huang, “30.1: Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Int. Symp. Dig. Tech. Pap. 41, 428–431 (2010).
[CrossRef]

M. Nirmal, C. A. Marttila, E. A. Aho, G. E. Casner, E. M. Haus, C. O. Schwabacher, and A. M. Schwabacher, “23.2: Design, fabrication, and characterization of multi-view, glasses free, 3D displays,” SID Int. Symp. Dig. Tech. Pap. 43, 305–307 (2012).
[CrossRef]

T.-H. Hsu, M.-H. Kuo, H.-H. Huang, S.-C. Chuang, C.-H. Chen, and C.-H. Tsai, “50.4: High resolution autostereoscopic 3D display with proximity projector array,” SID Int. Symp. Dig. Tech. Pap. 39, 760–763 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) Nonfocusing state and (b) focusing state of the proposed LC polymeric lens incorporated with a TN cell.

Fig. 2.
Fig. 2.

(a) Interference patterns observed under a polarized optical microscope (POM) after UV curing. The film axis is at 45° to the optical axis of the polarizer. (b) Dark state observed under a POM. The film axis is at 0° to the optical axis of the polarizer. (c) Parallel focused lines. The film axis is parallel to the optical axis of the polarizer (no analyzer). (d) Uniform bright state. The film axis is perpendicular to the optical axis of the polarizer (no analyzer).

Fig. 3.
Fig. 3.

(a) Simulated phase profile of the polymer lens by DIMOS and the fitted parabolic profile, and (b) the translated solid lens profile.

Fig. 4.
Fig. 4.

(a) Definition of crosstalk, (b) the alignment between the pixel plane and the slanted lens, and (c) normalized illuminance distribution of the autostereoscopic display.

Fig. 5.
Fig. 5.

Some factors that may lead to crosstalk.

Fig. 6.
Fig. 6.

(a) Proposed pixel dimension, and (b) normalized illuminance distribution (AR=48.7%).

Fig. 7.
Fig. 7.

Performance of (a) a spherical lens and (b) an aspherical lens. (c) The profile and (d) the normalized illuminance of the two lenses.

Fig. 8.
Fig. 8.

Comparison between slanted and nonslanted system.

Fig. 9.
Fig. 9.

Schematic setup of the double lens system.

Fig. 10.
Fig. 10.

Normalized illuminance distribution of the double lens structure.

Fig. 11.
Fig. 11.

Normalized illuminance distribution of View 5.

Fig. 12.
Fig. 12.

(a) Schematic design of the LC prism, (b) prism profile for a large display panel, and (c) light illuminance redistribution by using different LC prisms.

Tables (1)

Tables Icon

Table 1. Parameters of the Autostereoscopic Display

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f=πr2/φλ,
φ=2πneffd/λ.
φ=2π[nd0(n1)Δd]/λ,
n0d=nd0,
Δnd=(n1)Δd,
EF=(SiPi)2/D×100%,
X=Imin/(Imin+Imax)×100%.

Metrics