Abstract

Correlations of the fields at the receiver plane are evaluated after a symmetrical radial laser array beam incident field propagates in a turbulent atmosphere. The laser array configuration is composed of a number of the same size laser beamlets symmetrically located around a ring having a radius that determines the distance of the ring from the origin. The variations of the correlations of the received field originating from such laser array incidence versus the diagonal length starting from a receiver point are examined for various laser array parameters, turbulence parameters, and the locations of the reception points. Laser array parameters consist of the ring radius and the number and size of the beamlets. Structure constant, link length, and wavelength are the turbulence parameters whose effects on the field correlation of the laser arrays are also investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Baykal, “Field correlations of flat-topped Gaussian and annular beams in turbulence,” Opt. Lasers Eng. 49, 647–651 (2011).
    [CrossRef]
  2. Y. Baykal, “Sinusoidal Gaussian beam field correlations,” J. Opt. 14, 075707 (2012).
    [CrossRef]
  3. Y. Baykal, Y. Cai, and X. Ji, “Field correlations of annular beams in extremely strong turbulence,” Opt. Commun. 285, 4171–4174 (2012).
    [CrossRef]
  4. Y. Baykal, “Intensity correlations of general type beam in weakly turbulent atmosphere,” Opt. Laser Technol. 43, 1237–1242 (2011).
    [CrossRef]
  5. V. S. R. Gudimetla, R. B. Holmes, C. Smith, and G. Needham, “Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence,” J. Opt. Soc. Am. A 29, 832–841 (2012).
    [CrossRef]
  6. J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
    [CrossRef]
  7. X. Ji and G. Ji, “Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence,” Appl. Phys. B 92, 111–118 (2008).
    [CrossRef]
  8. X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
    [CrossRef]
  9. X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, “Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams,” J. Opt. Soc. Am. A 24, 3554–3563 (2007).
    [CrossRef]
  10. Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
    [CrossRef]
  11. H. Wang and X. Li, “Correlations between intensity fluctuations in apertured stochastic electromagnetic twist anisotropic Gaussian-Schell model beam propagating in turbulent atmosphere,” Optik 124, 1711–1715 (2013).
    [CrossRef]
  12. V. Kornilov, “Correlation of stellar scintillation in different photometric bands,” Appl. Opt. 50, 3717–3724 (2011).
    [CrossRef]
  13. J. A. Anguita and J. E. Cisternas, “Influence of turbulence strength on temporal correlation of scintillation,” Opt. Lett. 36, 1725–1727 (2011).
    [CrossRef]
  14. A. Jurado-Navas and A. Puerta-Notario, “Generation of correlated scintillations on atmospheric optical communications,” J. Opt. Commun. Netw. 1, 452–462 (2009).
    [CrossRef]
  15. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space,” Appl. Opt. 46, 6561–6571 (2007).
    [CrossRef]
  16. Y. Baykal, “Formulation of correlations for general-type beams in atmospheric turbulence,” J. Opt. Soc. Am. A 23, 889–893 (2006).
    [CrossRef]
  17. Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007).
    [CrossRef]
  18. H. Tang and B. Ou, “Beam propagation factor of radial Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Opt. Laser Technol. 43, 1442–1447 (2011).
    [CrossRef]
  19. P. Pan and Y. Dan, “Changes in the spectrum of radial array beams through turbulent atmosphere,” J. Mod. Opt. 60, 177–184 (2013).
    [CrossRef]
  20. G. Zhou, “Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere,” Opt. Express 19, 24699–24711 (2011).
    [CrossRef]
  21. H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
    [CrossRef]
  22. X. Li, X. Ji, and F. Yang, “Beam quality of radial Gaussian Schell-model array beams,” Opt. Laser Technol 42, 604–609 (2010).
    [CrossRef]
  23. X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010).
    [CrossRef]
  24. J. Li, H. Zhang, and B. Lü, “Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path,” J. Opt. 12, 065401 (2010).
    [CrossRef]
  25. S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
    [CrossRef]
  26. Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
    [CrossRef]
  27. Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13, 125701 (2011).
    [CrossRef]
  28. P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
    [CrossRef]
  29. P. Pan, “Spectrum changes of rectangular array beams through turbulent atmosphere,” Opt. Commun. 293, 95–101 (2013).
    [CrossRef]
  30. Y. Gu and G. Gbur, “Scintillation of Airy beam arrays in atmospheric turbulence,” Opt. Lett. 35, 3456–3458 (2010).
    [CrossRef]
  31. Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
    [CrossRef]
  32. P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
    [CrossRef]
  33. H. Tang and B. Ou, “Average spreading of a linear Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Appl. Phys. B 104, 1007–1012 (2011).
    [CrossRef]
  34. X. Ji and Z. Pu, “Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence,” Opt. Commun. 283, 3884–3890 (2010).
    [CrossRef]
  35. X. Ji and X. Li, “Directionality of Gaussian array beams propagating in atmospheric turbulence,” J. Opt. Soc. Am. A 26, 236–243 (2009).
    [CrossRef]
  36. Z. I. Feizulin and Y. A. Kravtsov, “Broadening of a laser beam in a turbulent medium,” Radiophys. Quantum Electron. 10, 33–35 (1967).
    [CrossRef]
  37. S. J. Wang, Y. Baykal, and M. A. Plonus, “Receiver aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73, 831–837 (1983).
    [CrossRef]

2013 (7)

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
[CrossRef]

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

H. Wang and X. Li, “Correlations between intensity fluctuations in apertured stochastic electromagnetic twist anisotropic Gaussian-Schell model beam propagating in turbulent atmosphere,” Optik 124, 1711–1715 (2013).
[CrossRef]

P. Pan and Y. Dan, “Changes in the spectrum of radial array beams through turbulent atmosphere,” J. Mod. Opt. 60, 177–184 (2013).
[CrossRef]

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
[CrossRef]

P. Pan, “Spectrum changes of rectangular array beams through turbulent atmosphere,” Opt. Commun. 293, 95–101 (2013).
[CrossRef]

2012 (4)

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Y. Baykal, “Sinusoidal Gaussian beam field correlations,” J. Opt. 14, 075707 (2012).
[CrossRef]

Y. Baykal, Y. Cai, and X. Ji, “Field correlations of annular beams in extremely strong turbulence,” Opt. Commun. 285, 4171–4174 (2012).
[CrossRef]

V. S. R. Gudimetla, R. B. Holmes, C. Smith, and G. Needham, “Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence,” J. Opt. Soc. Am. A 29, 832–841 (2012).
[CrossRef]

2011 (11)

Y. Baykal, “Field correlations of flat-topped Gaussian and annular beams in turbulence,” Opt. Lasers Eng. 49, 647–651 (2011).
[CrossRef]

Y. Baykal, “Intensity correlations of general type beam in weakly turbulent atmosphere,” Opt. Laser Technol. 43, 1237–1242 (2011).
[CrossRef]

G. Zhou, “Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere,” Opt. Express 19, 24699–24711 (2011).
[CrossRef]

H. Tang and B. Ou, “Beam propagation factor of radial Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Opt. Laser Technol. 43, 1442–1447 (2011).
[CrossRef]

V. Kornilov, “Correlation of stellar scintillation in different photometric bands,” Appl. Opt. 50, 3717–3724 (2011).
[CrossRef]

J. A. Anguita and J. E. Cisternas, “Influence of turbulence strength on temporal correlation of scintillation,” Opt. Lett. 36, 1725–1727 (2011).
[CrossRef]

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13, 125701 (2011).
[CrossRef]

P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
[CrossRef]

Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
[CrossRef]

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

H. Tang and B. Ou, “Average spreading of a linear Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Appl. Phys. B 104, 1007–1012 (2011).
[CrossRef]

2010 (5)

X. Ji and Z. Pu, “Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence,” Opt. Commun. 283, 3884–3890 (2010).
[CrossRef]

Y. Gu and G. Gbur, “Scintillation of Airy beam arrays in atmospheric turbulence,” Opt. Lett. 35, 3456–3458 (2010).
[CrossRef]

X. Li, X. Ji, and F. Yang, “Beam quality of radial Gaussian Schell-model array beams,” Opt. Laser Technol 42, 604–609 (2010).
[CrossRef]

X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010).
[CrossRef]

J. Li, H. Zhang, and B. Lü, “Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path,” J. Opt. 12, 065401 (2010).
[CrossRef]

2009 (2)

2008 (2)

X. Ji and G. Ji, “Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence,” Appl. Phys. B 92, 111–118 (2008).
[CrossRef]

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

2007 (3)

2006 (1)

1983 (1)

1967 (1)

Z. I. Feizulin and Y. A. Kravtsov, “Broadening of a laser beam in a turbulent medium,” Radiophys. Quantum Electron. 10, 33–35 (1967).
[CrossRef]

Anguita, J. A.

Arpali, Ç.

Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
[CrossRef]

Arpali, S. A.

Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
[CrossRef]

Baykal, Y.

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Y. Baykal, “Sinusoidal Gaussian beam field correlations,” J. Opt. 14, 075707 (2012).
[CrossRef]

Y. Baykal, Y. Cai, and X. Ji, “Field correlations of annular beams in extremely strong turbulence,” Opt. Commun. 285, 4171–4174 (2012).
[CrossRef]

Y. Baykal, “Intensity correlations of general type beam in weakly turbulent atmosphere,” Opt. Laser Technol. 43, 1237–1242 (2011).
[CrossRef]

Y. Baykal, “Field correlations of flat-topped Gaussian and annular beams in turbulence,” Opt. Lasers Eng. 49, 647–651 (2011).
[CrossRef]

Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
[CrossRef]

X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007).
[CrossRef]

Y. Baykal, “Formulation of correlations for general-type beams in atmospheric turbulence,” J. Opt. Soc. Am. A 23, 889–893 (2006).
[CrossRef]

S. J. Wang, Y. Baykal, and M. A. Plonus, “Receiver aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73, 831–837 (1983).
[CrossRef]

Cai, Y.

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Y. Baykal, Y. Cai, and X. Ji, “Field correlations of annular beams in extremely strong turbulence,” Opt. Commun. 285, 4171–4174 (2012).
[CrossRef]

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13, 125701 (2011).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007).
[CrossRef]

Chen, J.

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Chen, S.

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, “Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams,” J. Opt. Soc. Am. A 24, 3554–3563 (2007).
[CrossRef]

Chen, X.

Chen, Y.

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007).
[CrossRef]

Chen, Z.

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

Cisternas, J. E.

Dan, Y.

P. Pan and Y. Dan, “Changes in the spectrum of radial array beams through turbulent atmosphere,” J. Mod. Opt. 60, 177–184 (2013).
[CrossRef]

P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
[CrossRef]

Dang, A.

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

Dolfi, D.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
[CrossRef]

Eyyuboglu, H. T.

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
[CrossRef]

X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007).
[CrossRef]

Feizulin, Z. I.

Z. I. Feizulin and Y. A. Kravtsov, “Broadening of a laser beam in a turbulent medium,” Radiophys. Quantum Electron. 10, 33–35 (1967).
[CrossRef]

Gbur, G.

Ghafary, B.

S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
[CrossRef]

Golmohammady, S.

S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
[CrossRef]

Gu, W.

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

Gu, Y.

Gudimetla, V. S. R.

Guo, H.

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

Holmes, R. B.

Ji, G.

X. Ji and G. Ji, “Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence,” Appl. Phys. B 92, 111–118 (2008).
[CrossRef]

Ji, X.

Y. Baykal, Y. Cai, and X. Ji, “Field correlations of annular beams in extremely strong turbulence,” Opt. Commun. 285, 4171–4174 (2012).
[CrossRef]

X. Li, X. Ji, and F. Yang, “Beam quality of radial Gaussian Schell-model array beams,” Opt. Laser Technol 42, 604–609 (2010).
[CrossRef]

X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Influence of turbulence on the effective radius of curvature of radial Gaussian array beams,” Opt. Express 18, 6922–6928 (2010).
[CrossRef]

X. Ji and Z. Pu, “Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence,” Opt. Commun. 283, 3884–3890 (2010).
[CrossRef]

X. Ji and X. Li, “Directionality of Gaussian array beams propagating in atmospheric turbulence,” J. Opt. Soc. Am. A 26, 236–243 (2009).
[CrossRef]

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

X. Ji and G. Ji, “Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence,” Appl. Phys. B 92, 111–118 (2008).
[CrossRef]

X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, “Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams,” J. Opt. Soc. Am. A 24, 3554–3563 (2007).
[CrossRef]

Jurado-Navas, A.

Kashani, F. D.

S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
[CrossRef]

Kornilov, V.

Kravtsov, Y. A.

Z. I. Feizulin and Y. A. Kravtsov, “Broadening of a laser beam in a turbulent medium,” Radiophys. Quantum Electron. 10, 33–35 (1967).
[CrossRef]

Li, J.

J. Li, H. Zhang, and B. Lü, “Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path,” J. Opt. 12, 065401 (2010).
[CrossRef]

Li, X.

H. Wang and X. Li, “Correlations between intensity fluctuations in apertured stochastic electromagnetic twist anisotropic Gaussian-Schell model beam propagating in turbulent atmosphere,” Optik 124, 1711–1715 (2013).
[CrossRef]

X. Li, X. Ji, and F. Yang, “Beam quality of radial Gaussian Schell-model array beams,” Opt. Laser Technol 42, 604–609 (2010).
[CrossRef]

X. Ji and X. Li, “Directionality of Gaussian array beams propagating in atmospheric turbulence,” J. Opt. Soc. Am. A 26, 236–243 (2009).
[CrossRef]

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, “Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams,” J. Opt. Soc. Am. A 24, 3554–3563 (2007).
[CrossRef]

Liu, Z.

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

Lü, B.

J. Li, H. Zhang, and B. Lü, “Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path,” J. Opt. 12, 065401 (2010).
[CrossRef]

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, “Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams,” J. Opt. Soc. Am. A 24, 3554–3563 (2007).
[CrossRef]

Luo, B.

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

Ma, H.

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

Minet, J.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
[CrossRef]

Needham, G.

Neifeld, M. A.

Ou, B.

H. Tang and B. Ou, “Beam propagation factor of radial Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Opt. Laser Technol. 43, 1442–1447 (2011).
[CrossRef]

H. Tang and B. Ou, “Average spreading of a linear Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Appl. Phys. B 104, 1007–1012 (2011).
[CrossRef]

Pan, P.

P. Pan, “Spectrum changes of rectangular array beams through turbulent atmosphere,” Opt. Commun. 293, 95–101 (2013).
[CrossRef]

P. Pan and Y. Dan, “Changes in the spectrum of radial array beams through turbulent atmosphere,” J. Mod. Opt. 60, 177–184 (2013).
[CrossRef]

P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
[CrossRef]

Plonus, M. A.

Polnau, E.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
[CrossRef]

Pu, Z.

X. Ji and Z. Pu, “Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence,” Opt. Commun. 283, 3884–3890 (2010).
[CrossRef]

Puerta-Notario, A.

Qiao, N.

P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
[CrossRef]

Smith, C.

Tang, H.

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

H. Tang and B. Ou, “Beam propagation factor of radial Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Opt. Laser Technol. 43, 1442–1447 (2011).
[CrossRef]

H. Tang and B. Ou, “Average spreading of a linear Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Appl. Phys. B 104, 1007–1012 (2011).
[CrossRef]

Vasic, B. V.

Vorontsov, M. A.

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
[CrossRef]

Wang, B.

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

Wang, H.

H. Wang and X. Li, “Correlations between intensity fluctuations in apertured stochastic electromagnetic twist anisotropic Gaussian-Schell model beam propagating in turbulent atmosphere,” Optik 124, 1711–1715 (2013).
[CrossRef]

Wang, S. J.

Wang, T.

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

Wang, X.

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

Wu, G.

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

Xu, H.

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

Yang, F.

X. Li, X. Ji, and F. Yang, “Beam quality of radial Gaussian Schell-model array beams,” Opt. Laser Technol 42, 604–609 (2010).
[CrossRef]

Yousefi, M.

S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
[CrossRef]

Yu, S.

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

Yuan, Y.

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13, 125701 (2011).
[CrossRef]

Zhang, B.

P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
[CrossRef]

Zhang, E.

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

Zhang, H.

J. Li, H. Zhang, and B. Lü, “Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path,” J. Opt. 12, 065401 (2010).
[CrossRef]

Zhou, G.

Zhou, P.

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (6)

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88, 467–475 (2007).
[CrossRef]

X. Ji and G. Ji, “Spatial correlation properties of apertured partially coherent beams propagating through atmospheric turbulence,” Appl. Phys. B 92, 111–118 (2008).
[CrossRef]

H. Tang, B. Wang, B. Luo, A. Dang, and H. Guo, “Scintillation optimization of radial Gaussian beam array propagating through Kolmogorov turbulence,” Appl. Phys. B 111, 149–154 (2013).
[CrossRef]

Ç. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboğlu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011).
[CrossRef]

P. Zhou, X. Wang, Y. Ma, H. Ma, H. Xu, and Z. Liu, “Propagation of Gaussian beam array through an optical system in turbulent atmosphere,” Appl. Phys. B 103, 1009–1012 (2011).
[CrossRef]

H. Tang and B. Ou, “Average spreading of a linear Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Appl. Phys. B 104, 1007–1012 (2011).
[CrossRef]

J. Mod. Opt. (3)

P. Pan and Y. Dan, “Changes in the spectrum of radial array beams through turbulent atmosphere,” J. Mod. Opt. 60, 177–184 (2013).
[CrossRef]

S. Golmohammady, M. Yousefi, F. D. Kashani, and B. Ghafary, “Reliability analysis of the flat-topped array beam FSO communication link,” J. Mod. Opt. 60, 696–703 (2013).
[CrossRef]

X. Ji, X. Li, S. Chen, E. Zhang, and B. Lü, “Spatial correlation properties of Gaussian–Schell model beams propagating through atmospheric turbulence,” J. Mod. Opt. 55, 877–891 (2008).
[CrossRef]

J. Opt. (4)

Y. Baykal, “Sinusoidal Gaussian beam field correlations,” J. Opt. 14, 075707 (2012).
[CrossRef]

J. Minet, M. A. Vorontsov, E. Polnau, and D. Dolfi, “Enhanced correlation of received power-signal fluctuations in bidirectional optical links,” J. Opt. 15, 022401 (2013).
[CrossRef]

J. Li, H. Zhang, and B. Lü, “Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path,” J. Opt. 12, 065401 (2010).
[CrossRef]

Y. Yuan and Y. Cai, “Scintillation index of a flat-topped beam array in a weakly turbulent atmosphere,” J. Opt. 13, 125701 (2011).
[CrossRef]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Opt. Commun. (5)

Z. Chen, S. Yu, T. Wang, G. Wu, H. Guo, and W. Gu, “Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects,” Opt. Commun. 287, 12–18 (2013).
[CrossRef]

Y. Baykal, Y. Cai, and X. Ji, “Field correlations of annular beams in extremely strong turbulence,” Opt. Commun. 285, 4171–4174 (2012).
[CrossRef]

P. Pan, B. Zhang, N. Qiao, and Y. Dan, “Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence,” Opt. Commun. 284, 1019–1025 (2011).
[CrossRef]

P. Pan, “Spectrum changes of rectangular array beams through turbulent atmosphere,” Opt. Commun. 293, 95–101 (2013).
[CrossRef]

X. Ji and Z. Pu, “Effective Rayleigh range of Gaussian array beams propagating through atmospheric turbulence,” Opt. Commun. 283, 3884–3890 (2010).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol (1)

X. Li, X. Ji, and F. Yang, “Beam quality of radial Gaussian Schell-model array beams,” Opt. Laser Technol 42, 604–609 (2010).
[CrossRef]

Opt. Laser Technol. (2)

Y. Baykal, “Intensity correlations of general type beam in weakly turbulent atmosphere,” Opt. Laser Technol. 43, 1237–1242 (2011).
[CrossRef]

H. Tang and B. Ou, “Beam propagation factor of radial Gaussian–Schell model beam array in non-Kolmogorov turbulence,” Opt. Laser Technol. 43, 1442–1447 (2011).
[CrossRef]

Opt. Lasers Eng. (2)

Y. Baykal, “Field correlations of flat-topped Gaussian and annular beams in turbulence,” Opt. Lasers Eng. 49, 647–651 (2011).
[CrossRef]

Y. Yuan, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and J. Chen, “Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere,” Opt. Lasers Eng. 50, 752–759 (2012).
[CrossRef]

Opt. Lett. (2)

Optik (1)

H. Wang and X. Li, “Correlations between intensity fluctuations in apertured stochastic electromagnetic twist anisotropic Gaussian-Schell model beam propagating in turbulent atmosphere,” Optik 124, 1711–1715 (2013).
[CrossRef]

Radiophys. Quantum Electron. (1)

Z. I. Feizulin and Y. A. Kravtsov, “Broadening of a laser beam in a turbulent medium,” Radiophys. Quantum Electron. 10, 33–35 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of radial laser array. (b) Field correlations of array beams in turbulence for various r0.

Fig. 2.
Fig. 2.

Field correlations of array beams in turbulence for various N.

Fig. 3.
Fig. 3.

Field correlations of array beams in turbulence for various αs.

Fig. 4.
Fig. 4.

Field correlations of array beams in turbulence for various Cn2.

Fig. 5.
Fig. 5.

Field correlations of array beams in turbulence for various L.

Fig. 6.
Fig. 6.

Field correlations of array beams in turbulence for various λ.

Fig. 7.
Fig. 7.

(a) Field correlations of array beams in turbulence for various (p1x,p1y). (b) Normalized field correlations of array beams in turbulence for various (p1x,p1y).

Fig. 8.
Fig. 8.

Equal-correlation curves of array beams in turbulence using two parameters, N and r0.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

uninc(rx,ry)=exp[(rxr0)22αs2ry22αs2].
rxsxcosθn+sysinθn,rysycosθnsxsinθn,
uninc(sx,sy)=exp[(sxcosθn+sysinθnr0)22αs2(sycosθnsxsinθn)22αs2]=exp[12αs2(sx2+sy22r0sxcosθn2r0sysinθn+r02)].
uNinc(sx,sy)=n=1Nuninc(sx,sy).
u(px,py)=kexp(ikL)2πiLdsxdsyuNinc(sx,sy)×exp{ik2L[(sxpx)2+(sypy)2]}×exp[ψ(sx,sy,px,py)],
u(px1,py1)u*(px2,py2)=exp(r02αs2)(λL)2dsx1dsy1dsx2dsy2×n=1Nexp[12αs2(sx12+sy122r0sx1cosθn2r0sy1sinθn)]×m=1Nexp[12αs2(sx22+sy222r0sx2cosθm2r0sy2sinθm)]×exp{ik2L[(sx1px1)2+(sy1py1)2(sx2px2)2(sy2py2)2]}×exp[ψ(sx1,sy1,px1,py1)+ψ*(sx2,sy2,px2,py2)],
exp(ψ+ψ*)=exp{ρ02[(s1xs2x)2+(s1ys2y)2+(s1xs2x)(p1xp2x)+(s1ys2y)(p1yp2y)+(p1xp2x)2+(p1yp2y)2]},
u(px1,py1)u*(p1x+rx,p1y+ry)=(πλL)2exp(r02αs2)exp(rx2+ry2ρ02)exp[ik2L(2p1xrx+rx2+2p1yry+ry2)]×n=1Nm=1N1A1A2exp[(0.25A1+0.125A2A12ρ02)(B1x2+B1y2)]×exp[0.5A2A1ρ02(B1xB2x+B1yB2y)+0.25A2(B2x2+B2y2)],
A1=ik2L+12αs2+1ρ02,A2=ik2L+12αs2+1ρ021A1ρ04,B1x=r0cosθnαs2ikp1xL+rxρ02,B1y=r0sinθnαs2ikp1yL+ryρ02,B2x=r0cosθmαs2+ikL(p1x+rx)rxρ02,B2y=r0sinθmαs2+ikL(p1y+ry)ryρ02.

Metrics