Abstract

Performance of on–off keying (OOK), digital pulse interval modulation (DPIM), and pulse position modulation (PPM) schemes are researched for ground-to-satellite laser uplink communications. Packet error rates of these modulation systems are compared, with consideration of the combined effect of intensity fluctuation and beam wander. Based on the numerical results, performances of different modulation systems are discussed. Optimum divergence angle and transmitted beam radius of different modulation systems are indicated and the relations of the transmitted laser power to them are analyzed. This work can be helpful for modulation scheme selection and system design in ground-to-satellite laser uplink communications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
    [CrossRef]
  2. H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.
  3. H. Wang, G. Chen, X. Sun, and T. Zhang, “Performance analysis of dicode pulse position modulation for optical wireless communications,” in International Conference on Wireless Communications, Networking and Mobile Computing (2007), pp. 3027–3030.
  4. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
    [CrossRef]
  5. J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008).
    [CrossRef]
  6. J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
    [CrossRef]
  7. J. Zhang, “Modulation analysis for outdoors applications of optical wireless communications,” in International Conference on Communication Technology Proceedings (IEEE, 2000), pp. 1483–1487.
  8. D. Chadha and P. K. Rathore, “Performance of pulse modulation schemes for infrared wireless communication,” 2000 Asia-Pacific Microwave Conference (IEEE, 2000), pp. 946–949.
  9. Z. Hu and J. Tang, “Performance of digital pulse interval modulation of atmospheric optical wireless communication system,” Proc. SPIE 5625, 202–208 (2005).
    [CrossRef]
  10. R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).
  11. M. Srinivasan and V. Vilnrotter, “Symbol-error probabilities for pulse-position modulation signaling with an avalanche photodiode receiver and Gaussian thermal noise,” (1998).
  12. F. Dios, J. A. Rubio, A. Rodriguez, and A. Comeronn, “Scintillation and beam-wander analysis in an optical ground station-satellite uplink,” Appl. Opt. 43, 3866–3873 (2004).
    [CrossRef]
  13. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering, 1998).
  14. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A 19, pp. 567–571 (2002).
    [CrossRef]
  15. L. C. Andrews, R. L. Phillips, and P. T. Yu, “Optical scintillations and fade statistics for a satellite-communication system,” Appl. Opt. 34, 7742–7751 (1995).
    [CrossRef]

2010 (1)

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

2008 (1)

2005 (2)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
[CrossRef]

Z. Hu and J. Tang, “Performance of digital pulse interval modulation of atmospheric optical wireless communication system,” Proc. SPIE 5625, 202–208 (2005).
[CrossRef]

2004 (1)

2002 (1)

1998 (1)

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
[CrossRef]

1995 (1)

Andrews, L. C.

Burris, H. R.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Chadha, D.

D. Chadha and P. K. Rathore, “Performance of pulse modulation schemes for infrared wireless communication,” 2000 Asia-Pacific Microwave Conference (IEEE, 2000), pp. 946–949.

Chen, G.

H. Wang, G. Chen, X. Sun, and T. Zhang, “Performance analysis of dicode pulse position modulation for optical wireless communications,” in International Conference on Wireless Communications, Networking and Mobile Computing (2007), pp. 3027–3030.

Comeronn, A.

Dios, F.

Du, W.

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008).
[CrossRef]

Gagliardi, R. M.

R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

Ghassemlooy, Z.

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
[CrossRef]

Hayes, A. R.

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
[CrossRef]

Hu, Z.

Z. Hu and J. Tang, “Performance of digital pulse interval modulation of atmospheric optical wireless communication system,” Proc. SPIE 5625, 202–208 (2005).
[CrossRef]

Jiang, Y.

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008).
[CrossRef]

Jono, T.

Kaluarachchi, E. D.

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
[CrossRef]

Karp, S.

R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

Kiasaleh, K.

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
[CrossRef]

Ma, J.

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008).
[CrossRef]

Nakagawa, K.

Namazi, N. M.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Phillips, R. L.

Rathore, P. K.

D. Chadha and P. K. Rathore, “Performance of pulse modulation schemes for infrared wireless communication,” 2000 Asia-Pacific Microwave Conference (IEEE, 2000), pp. 946–949.

Reed, A. E.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Rodriguez, A.

Rubio, J. A.

Scharpf, W. J.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Seed, N. L.

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
[CrossRef]

Srinivasan, M.

M. Srinivasan and V. Vilnrotter, “Symbol-error probabilities for pulse-position modulation signaling with an avalanche photodiode receiver and Gaussian thermal noise,” (1998).

Stell, M. F.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Suite, M. R.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Sun, X.

H. Wang, G. Chen, X. Sun, and T. Zhang, “Performance analysis of dicode pulse position modulation for optical wireless communications,” in International Conference on Wireless Communications, Networking and Mobile Computing (2007), pp. 3027–3030.

Tan, L.

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008).
[CrossRef]

Tang, J.

Z. Hu and J. Tang, “Performance of digital pulse interval modulation of atmospheric optical wireless communication system,” Proc. SPIE 5625, 202–208 (2005).
[CrossRef]

Toyoshima, M.

Vilcheck, M. J.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

Vilnrotter, V.

M. Srinivasan and V. Vilnrotter, “Symbol-error probabilities for pulse-position modulation signaling with an avalanche photodiode receiver and Gaussian thermal noise,” (1998).

Wang, H.

H. Wang, G. Chen, X. Sun, and T. Zhang, “Performance analysis of dicode pulse position modulation for optical wireless communications,” in International Conference on Wireless Communications, Networking and Mobile Computing (2007), pp. 3027–3030.

Yamamoto, A.

Yu, P. T.

Yu, S.

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du, “Influence of beam wander on bit-error rate in a ground-to-satellite laser uplink communication system,” Opt. Lett. 33, 2611–2613 (2008).
[CrossRef]

Zhang, J.

J. Zhang, “Modulation analysis for outdoors applications of optical wireless communications,” in International Conference on Communication Technology Proceedings (IEEE, 2000), pp. 1483–1487.

Zhang, T.

H. Wang, G. Chen, X. Sun, and T. Zhang, “Performance analysis of dicode pulse position modulation for optical wireless communications,” in International Conference on Wireless Communications, Networking and Mobile Computing (2007), pp. 3027–3030.

Appl. Opt. (2)

IEEE Commun. Mag. (1)

Z. Ghassemlooy, A. R. Hayes, N. L. Seed, and E. D. Kaluarachchi, “Digital pulse interval modulation for optical communications,” IEEE Commun. Mag. 36(12), 95–99 (1998).
[CrossRef]

IEEE Trans. Commun. (1)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Ma, Y. Jiang, S. Yu, L. Tan, and W. Du, “Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications,” Opt. Commun. 283, 237–242 (2010).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

Z. Hu and J. Tang, “Performance of digital pulse interval modulation of atmospheric optical wireless communication system,” Proc. SPIE 5625, 202–208 (2005).
[CrossRef]

Other (7)

R. M. Gagliardi and S. Karp, Optical Telecommunications (Publishing House of Electronics Industry, 1998).

M. Srinivasan and V. Vilnrotter, “Symbol-error probabilities for pulse-position modulation signaling with an avalanche photodiode receiver and Gaussian thermal noise,” (1998).

J. Zhang, “Modulation analysis for outdoors applications of optical wireless communications,” in International Conference on Communication Technology Proceedings (IEEE, 2000), pp. 1483–1487.

D. Chadha and P. K. Rathore, “Performance of pulse modulation schemes for infrared wireless communication,” 2000 Asia-Pacific Microwave Conference (IEEE, 2000), pp. 946–949.

H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vilcheck, M. F. Stell, and M. R. Suite, “Adaptive thresholding for free-space optical communication receivers with multiplicative noise,” IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1473–1480.

H. Wang, G. Chen, X. Sun, and T. Zhang, “Performance analysis of dicode pulse position modulation for optical wireless communications,” in International Conference on Wireless Communications, Networking and Mobile Computing (2007), pp. 3027–3030.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Symbol structures for OOK, PPM, and DPIM, with M=2.

Fig. 2.
Fig. 2.

PERm versus Pm for different modulation systems in uplink, with θ=30μrad, W0=5cm, Dr=0.25m, and ζ=0°.

Fig. 3.
Fig. 3.

PERm versus Dr for different modulation systems in uplink, with Pm=2W, W0=5cm, Dr=0.25m, and ζ=0°.

Fig. 4.
Fig. 4.

PERm versus ζ for different modulation systems in uplink, with Pm=2W, θ=30μrad, W0=5cm, and Dr=0.25m.

Fig. 5.
Fig. 5.

PERm versus θ for different modulation systems in uplink, with Pm=1W, W0=5cm, Dr=0.25m, and ζ=0°.

Fig. 6.
Fig. 6.

θm versus Pm for different modulation systems in uplink, with W0=5cm, Dr=0.25m, and ζ=0°.

Fig. 7.
Fig. 7.

PER versus W0 for different modulation systems in uplink, with Pm=1W, θ=30μrad, Dr=0.25m, and ζ=0°.

Fig. 8.
Fig. 8.

Wm versus Pm for different modulation systems in uplink, with θ=30μrad, Dr=0.25m, and ζ=0°.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

PEROOK=1[(1P1/0)(1P0/1)]Lp2,
PERDPIM=1(1P1/0)(Nn1)LpM·(1P0/1)LpM,
P1/0=γ+12πσ0exp[(iμ0)22σ02]diP0/1=γ12πσ1exp[(iμ1)22σ12]di,
μ1=Ge(Ks+Kb)+IdcTsμ0=GeKb+IdcTsσ12=G2Fe2(Ks+Kb)+σn2σ02=G2Fe2Kb+σn2,
Ks=ITsη/hpυKb=IbTsη/hpυσn2=2kcTTs/RL,
γopt=μ0σ12μ1σ02σ12σ02+σ0σ1σ12σ02(μ0μ1)2+2(σ12σ02)(lnσ1tσ0),
PERPPM=1(1SERPPM)LpM,
SERPPM=1[0.5erfc(μ0μ12(σ02+σ12))]2M1,
p(r)=rσr2exp(r22σr2),
σr2=2.07h0LCn2(z)(Lz)2W(z)1/3dz,
Cn2(h)=0.0059(v/27)2(105h)10exp(h/1000)+2.7×1016exp(h/1500)+C0exp(h/100),
z=(h+R)sin(ζarcsin((R+h0)sin(ζ)h+R))sin(ζ),
p(I)=12πσI2(r,L)1Iexp[(lnII(r,L)+σI2(r,L)2)22σI2(r,L)],
I(r,L)=I(0,L)exp(2r2W2),
I(0,L)=αPmDr22W2,
I(0,L)PPM=αPmDr2W2·2M1I(0,L)DPIM=αPmDr2W2·N2.
σI2(r,L)=8.702μk7/6(Hh0)5/6sec11/6(ζ)+14.508μΛ5/6k7/6(Hh0)5/6sec11/6(ζ)(r2W2),
μ=h0HCn2(h)(1hh0Hh0)5/3dh,
μ=Reh0HCn2(h){ξ5/6[Λξ+i(1LRξ)]5/6Λ5/6ξ5/3}dh,
We=W[1+4.35μ1Λ5/6k7/6(Hh0)5/6sec11/6(ζ)]1/2,
Wst=(We2σr2)1/2.
pw(I)=0p(I)p(r)dr,
PERm=0PER·pw(I)dI,
dPERmdθ=0.
dPERmdW0=0.

Metrics