Abstract

We report on amplitude and phase imaging of out-of-plane sinusoidal surface vibration at nanometer scales with a heterodyne holographic interferometer. The originality of the proposed method is to make use of a multiplexed local oscillator to address several optical sidebands into the temporal bandwidth of a sensor array. This process is called coherent frequency-division multiplexing. It enables simultaneous recording and pixel-to-pixel division of sideband holograms, which permits quantitative wide-field mapping of optical phase-modulation depths. Additionally, a linear frequency chirp ensures the retrieval of the local mechanical phase shift of the vibration with respect to the excitation signal. The proposed approach is validated by quantitative motion characterization of the lamellophone of a musical box, behaving as a group of harmonic oscillators, under weak sinusoidal excitation. Images of the vibration amplitude versus excitation frequency show the resonance of the nanometric flexural response of one individual cantilever, at which a phase hop is measured.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (2)

» Media 1: AVI (5387 KB)     
» Media 2: AVI (2533 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription