Abstract

The Monoblock laser has become the laser of choice in long-range, eye-safe laser range finders. It is eye-safe with emission at 1570 nm, high pulse energy, simple construction, and high efficiency when pumped by a laser-diode stack. Although the output beam divergence of a typical Monoblock with a 3mm×3mm cross section is relatively large (10–12 mrad), it can be reduced to <1mrad using a telescope with large magnification. In this paper we present a simple and compact technique for achieving significant reduction in the Monoblock beam divergence using a partial reflector that is placed a short distance from the optical parametric oscillator (OPO). Using a 38 mm long Monoblock with a 10 mm long potassium titanyl phosphate OPO, we achieved a beam divergence of <4mrad, corresponding to a >2.5× reduction from the unmodified laser. Performance using this technique with various feedback and etalon spacings is presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
    [CrossRef]
  2. R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).
  3. R. Burnham, R. A. Soltzenberger, and A. Pinto, “Infrared optical parametric oscillator in potassium titanyl phosphate,” IEEE Photon. Technol. Lett. 1, 27–28 (1989).
    [CrossRef]
  4. J. E. Nettleton, B. W. Schilling, D. N. Barr, and J. S. Lei, “Monoblock laser for a low-cost, eye-safe, microlaser range finder,” Appl. Opt. 39, 2428–2432 (2000).
    [CrossRef]
  5. G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1988).
  6. K. Battou and K. Ait Ameur, “Transverse effects in compound resonators,” Opt. Commun. 183, 189–194 (2000).
    [CrossRef]

2007 (1)

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

2005 (1)

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

2000 (2)

1989 (1)

R. Burnham, R. A. Soltzenberger, and A. Pinto, “Infrared optical parametric oscillator in potassium titanyl phosphate,” IEEE Photon. Technol. Lett. 1, 27–28 (1989).
[CrossRef]

Ait Ameur, K.

K. Battou and K. Ait Ameur, “Transverse effects in compound resonators,” Opt. Commun. 183, 189–194 (2000).
[CrossRef]

Bargeron, C. B.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

Barr, D. N.

Battou, K.

K. Battou and K. Ait Ameur, “Transverse effects in compound resonators,” Opt. Commun. 183, 189–194 (2000).
[CrossRef]

Bonney-Ray, J. A.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

Burnham, R.

R. Burnham, R. A. Soltzenberger, and A. Pinto, “Infrared optical parametric oscillator in potassium titanyl phosphate,” IEEE Photon. Technol. Lett. 1, 27–28 (1989).
[CrossRef]

Goldberg, L.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Green, W. R.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

Hays, A. D.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Hernandez, G.

G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1988).

Lei, J. S.

McCally, R. L.

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

Nettleton, J.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Nettleton, J. E.

Pinto, A.

R. Burnham, R. A. Soltzenberger, and A. Pinto, “Infrared optical parametric oscillator in potassium titanyl phosphate,” IEEE Photon. Technol. Lett. 1, 27–28 (1989).
[CrossRef]

Schilling, B.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Schilling, B. W.

Soltzenberger, R. A.

R. Burnham, R. A. Soltzenberger, and A. Pinto, “Infrared optical parametric oscillator in potassium titanyl phosphate,” IEEE Photon. Technol. Lett. 1, 27–28 (1989).
[CrossRef]

Trussell, W.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

R. Burnham, R. A. Soltzenberger, and A. Pinto, “Infrared optical parametric oscillator in potassium titanyl phosphate,” IEEE Photon. Technol. Lett. 1, 27–28 (1989).
[CrossRef]

Johns Hopkins APL Tech. Dig. (1)

R. L. McCally, C. B. Bargeron, J. A. Bonney-Ray, and W. R. Green, “Laser eye safety research at APL,” Johns Hopkins APL Tech. Dig. 26, 46–55 (2005).

Opt. Commun. (1)

K. Battou and K. Ait Ameur, “Transverse effects in compound resonators,” Opt. Commun. 183, 189–194 (2000).
[CrossRef]

Proc. SPIE (1)

L. Goldberg, J. Nettleton, B. Schilling, W. Trussell, and A. D. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[CrossRef]

Other (1)

G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Monoblock laser.

Fig. 2.
Fig. 2.

Experimental arrangement.

Fig. 3.
Fig. 3.

Effective reflectivity R versus angle.

Fig. 4.
Fig. 4.

Angle of first reflectivity minimum versus mirror spacing.

Fig. 5.
Fig. 5.

Beam divergence versus feedback mirror position for 40% R.

Fig. 6.
Fig. 6.

Beam divergence versus feedback mirror position for 60% R.

Fig. 7.
Fig. 7.

Output energy.

Fig. 8.
Fig. 8.

Feedback mirror misalignment for plano feedback mirror.

Fig. 9.
Fig. 9.

Beam divergence versus feedback mirror position for a convex substrate.

Fig. 10.
Fig. 10.

Far-field image without feedback mirror.

Fig. 11.
Fig. 11.

Far-field image with feedback mirror at 50 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Reff=ROPO+RFB2ROPORFBcos4πlcosθλ1+ROPORFB2ROPORFBcos4πlcosθλ,
θ0=cos14l/λ14l/λ.
cos(4πlcosθλ)=1,

Metrics