Abstract

High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment. A novel thermal tuning technique and apparatus is presented that enables maintaining peak efficiency operation of the SBC system at various power levels without any mechanical adjustment. The method is demonstrated by combining two high-power ytterbium fiber lasers with high efficiency from low power to full combined power of 300 W (1.5 kW effective power), while maintaining peak combining efficiency within 0.5%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [CrossRef]
  2. D. R. Drachenberg, M. J. Messerly, P. H. Pax, A. K. Sridharan, J. Tassano, and J. W. Dawson, “First selective mode excitation and amplification in a ribbon core optical fiber,” Opt. Express 21, 11257–11269 (2013).
    [CrossRef]
  3. A. Sridharan, P. H. Pax, J. E. Heebner, D. R. Drachenberg, P. J. Armstrong, and J. W. Dawson, “Mode-converters for rectangular-core fiber amplifiers to achieve diffraction-limited power scaling,” Opt. Express 20, 28792–28800 (2012).
    [CrossRef]
  4. D. Rockwell, V. Shkunov, and J. Marciante, “Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package,” Opt. Express 19, 14746–14762 (2011).
    [CrossRef]
  5. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
    [CrossRef]
  6. A. L. Bullington, P. H. Pax, A. K. Sridharan, J. E. Heebner, M. J. Messerly, and J. W. Dawson, “Mode conversion in rectangular-core optical fibers,” Appl. Opt. 51, 84–88 (2012).
    [CrossRef]
  7. D. R. Drachenberg, M. J. Messerly, P. H. Pax, A. K. Sridharan, J. Tassano, and J. W. Dawson, “First multi-watt ribbon fiber oscillator in a high order mode,” Opt. Express 21, 18089–18096 (2013).
    [CrossRef]
  8. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36, 3118–3120 (2011).
    [CrossRef]
  9. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522  W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32, 349–351 (2007).
    [CrossRef]
  10. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  11. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006).
    [CrossRef]
  12. I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012).
    [CrossRef]
  13. O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
    [CrossRef]
  14. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
    [CrossRef]
  15. D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52, 7233–7242 (2013).
    [CrossRef]
  16. D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
    [CrossRef]
  17. L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE 6545, 654507 (2007).
    [CrossRef]
  18. J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

2013

2012

2011

2009

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

2008

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
[CrossRef]

2007

2006

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Andrusyak, O.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52, 7233–7242 (2013).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

Armstrong, P. J.

Barty, C. P. J.

Beach, R. J.

Bullington, A. L.

Ciapurin, I. V.

I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012).
[CrossRef]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006).
[CrossRef]

Dawson, J. W.

Divliansky, I.

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
[CrossRef]

Drachenberg, D.

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
[CrossRef]

Drachenberg, D. R.

Eberhardt, R.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Glebov, L.

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE 6545, 654507 (2007).
[CrossRef]

Glebov, L. B.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52, 7233–7242 (2013).
[CrossRef]

I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012).
[CrossRef]

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006).
[CrossRef]

Glebova, L.

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

Golubkov, V.

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

Gowin, M.

Heebner, J. E.

Hoffman, P. R.

Honea, E.

Jung, M.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Limpert, J.

Liu, A.

Loftus, T. H.

Ludewigt, K.

Lumeau, J.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52, 7233–7242 (2013).
[CrossRef]

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

Marciante, J.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Messerly, M. J.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Norsen, M.

Pax, P. H.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Rockwell, D.

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

Royse, R.

Schmidt, O.

Schreiber, T.

Shkunov, V.

Shverdin, M. Y.

Siders, C. W.

Smirnov, V.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52, 7233–7242 (2013).
[CrossRef]

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

Smirnov, V. I.

I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012).
[CrossRef]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006).
[CrossRef]

Sridharan, A.

Sridharan, A. K.

Stappaerts, E. A.

Tassano, J.

ten Have, E.

Thomas, A. M.

Tsybin, I.

Tünnermann, A.

Venus, G.

D. R. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, J. Lumeau, and L. B. Glebov, “Ultimate efficiency of spectral beam combining by volume Bragg gratings,” Appl. Opt. 52, 7233–7242 (2013).
[CrossRef]

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

Venus, G. B.

I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012).
[CrossRef]

Wirth, C.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Zanotto, E. D.

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009).
[CrossRef]

Laser Photonics Rev.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2, 429–448 (2008).
[CrossRef]

Opt. Commun.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560–2563 (2009).
[CrossRef]

Opt. Eng.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45, 015802 (2006).
[CrossRef]

I. V. Ciapurin, D. R. Drachenberg, V. I. Smirnov, G. B. Venus, and L. B. Glebov, “Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors,” Opt. Eng. 51, 058001 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. (Amst.)

J. Lumeau, L. Glebova, V. Golubkov, E. D. Zanotto, and L. B. Glebov, “Origin of crystallization-induced refractive index changes in photo-thermo-refractive glass,” Opt. Mater. (Amst.) 32, 139–146 (2009).

Proc. SPIE

D. Drachenberg, I. Divliansky, V. Smirnov, G. Venus, and L. Glebov, “High-power spectral beam combining of fiber lasers with ultra high-spectral density by thermal tuning of volume Bragg gratings,” Proc. SPIE 7914, 79141F (2011).
[CrossRef]

L. Glebov, “Fluorinated silicate glass for conventional and holographic optical elements,” Proc. SPIE 6545, 654507 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Diffraction efficiency spectrum for a VBG used for high-density spectral beam combining.

Fig. 2.
Fig. 2.

VBG mount with thermal control.

Fig. 3.
Fig. 3.

Experimental setup for measuring the diffraction efficiency spectral profile of thermally controlled VBGs exposed to high-power laser radiation.

Fig. 4.
Fig. 4.

Diffraction efficiency of a VBG under various heating conditions.

Fig. 5.
Fig. 5.

Bragg wavelength profile across the VBG aperture under various heating conditions.

Fig. 6.
Fig. 6.

Two-channel high-power SBC experimental setup.

Fig. 7.
Fig. 7.

Two-channel beam combining efficiency at different power levels and VBG edge temperatures.

Tables (1)

Tables Icon

Table 1: VBG Diffraction Efficiency and Test Beam M2 under Various Heating Conditions

Metrics