Abstract

This paper demonstrates the effects of applying magnetic and electric fields and physical dimensions alterations on AlGaAs/GaAs multiple quantum well (QW) slow light devices. Physical parameters include quantum well sizes and number of quantum wells. To the best of our knowledge, this is the first analysis of the effects of both applying magnetic/electric fields and physical parameters alterations and the first suggestion for matching the prefabrication and post fabrication tuning of the slow light devices based on excitonic population oscillations. The aim of our theoretical analysis is controlling the optical properties such as central frequency, bandwidth, and slow down factor (SDF) in slow light devices based on excitonic population oscillation to achieve better tuning. To reach these purposes, first we investigate the quantum well size and number of quantum wells alteration effects. Next, we analyze the effects of applying magnetic and electric fields to the multiple quantum well structure, separately. Finally, physical parameters and applied external fields are changed for measuring frequency shift and SDF for coherent population oscillation slow light devices. The results show the available central frequency shifts in about 1.6 THz at best. Also the SDF value improvement is about one order of magnitude. These results will be applicable for optical nonlinearity enhancements, all-optical signal processing, optical communications, all-optical switches, optical modulators, and variable true delays.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, “Slow light: from basics to future prospects,” Photonics Spectra 40, 44–50 (2006).
  2. J. B. Khurgin and R. S. Tucker, Slow Light Science and Applications (CRC, 2009).
  3. W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
    [CrossRef]
  4. H. Kaatuzian, Photonics, 2nd ed. (AUT, 2009), Vol. 2, in Persian.
  5. S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).
  6. D. Sun and P. C. Ku, “Slow light using P-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).
  7. C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
    [CrossRef]
  8. B. Pesala, Z. Y. Chen, A. V. Uskov, and C. Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers,” Opt. Express 14, 12968–12975 (2006).
    [CrossRef]
  9. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [CrossRef]
  10. R. S. Knox, Theory of Excitons (Academic, 1963).
  11. H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).
  12. H. Mathieu, P. Lefebvre, and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells,” Phys. Rev. B 46, 4092–4101 (1992).
  13. M. Bugajski, W. Kuszko, and K. Regifiski, “Diamagnetic shift of exciton energy levels in GaAs-Ga1-xAlxAs quantum wells,” Solid State Commun. 60, 669–673 (1986).
    [CrossRef]
  14. J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).
  15. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
    [CrossRef]

2013 (1)

H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).

2012 (1)

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
[CrossRef]

2008 (1)

2006 (2)

2004 (1)

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

2003 (1)

C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

1999 (1)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

1992 (1)

H. Mathieu, P. Lefebvre, and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells,” Phys. Rev. B 46, 4092–4101 (1992).

1986 (1)

M. Bugajski, W. Kuszko, and K. Regifiski, “Diamagnetic shift of exciton energy levels in GaAs-Ga1-xAlxAs quantum wells,” Solid State Commun. 60, 669–673 (1986).
[CrossRef]

1984 (2)

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Altarelli, M.

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

Ataei, M.

H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).

Belle, G.

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

Boyd, R. W.

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, “Slow light: from basics to future prospects,” Photonics Spectra 40, 44–50 (2006).

Bugajski, M.

M. Bugajski, W. Kuszko, and K. Regifiski, “Diamagnetic shift of exciton energy levels in GaAs-Ga1-xAlxAs quantum wells,” Solid State Commun. 60, 669–673 (1986).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Chang, S. W.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

Chang-Hasnain, C.

Chang-Hasnian, C. J.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Chen, Z. Y.

Christol, P.

H. Mathieu, P. Lefebvre, and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells,” Phys. Rev. B 46, 4092–4101 (1992).

Chuang, S. L.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Fasolino, A.

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Gaeta, A. L.

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, “Slow light: from basics to future prospects,” Photonics Spectra 40, 44–50 (2006).

Gauthier, D. J.

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, “Slow light: from basics to future prospects,” Photonics Spectra 40, 44–50 (2006).

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Jin, Y. J.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
[CrossRef]

Kaatuzian, H.

H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).

H. Kaatuzian, Photonics, 2nd ed. (AUT, 2009), Vol. 2, in Persian.

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin and R. S. Tucker, Slow Light Science and Applications (CRC, 2009).

Kim, J.

C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Knox, R. S.

R. S. Knox, Theory of Excitons (Academic, 1963).

Ku, P. C.

D. Sun and P. C. Ku, “Slow light using P-doped semiconductor heterostructures for high-bandwidth nonlinear signal processing,” J. Lightwave Technol. 26, 3811–3817 (2008).

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Kuszko, W.

M. Bugajski, W. Kuszko, and K. Regifiski, “Diamagnetic shift of exciton energy levels in GaAs-Ga1-xAlxAs quantum wells,” Solid State Commun. 60, 669–673 (1986).
[CrossRef]

Lefebvre, P.

H. Mathieu, P. Lefebvre, and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells,” Phys. Rev. B 46, 4092–4101 (1992).

Li, X. M.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
[CrossRef]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Maan, J. C.

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

Mathieu, H.

H. Mathieu, P. Lefebvre, and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells,” Phys. Rev. B 46, 4092–4101 (1992).

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Palinginis, P.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

Pesala, B.

Ploog, K.

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

Regifiski, K.

M. Bugajski, W. Kuszko, and K. Regifiski, “Diamagnetic shift of exciton energy levels in GaAs-Ga1-xAlxAs quantum wells,” Solid State Commun. 60, 669–673 (1986).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Shokri Kojori, H.

H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).

Sun, D.

Tucker, R. S.

J. B. Khurgin and R. S. Tucker, Slow Light Science and Applications (CRC, 2009).

Uskov, A. V.

Wang, H.

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

Wang, T.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

Yan, W.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
[CrossRef]

Zandi, A.

H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Appl. Phys. B (1)

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B 108, 515–519 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Quantum Electron. (1)

H. Kaatuzian, H. Shokri Kojori, A. Zandi, and M. Ataei, “Analysis of quantum well size alteration effects on slow light device based on excitonic population oscillation,” Opt. Quantum Electron. 45, 947–959 (2013).

Photonics Spectra (1)

D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, “Slow light: from basics to future prospects,” Photonics Spectra 40, 44–50 (2006).

Phys. Rev. B (3)

H. Mathieu, P. Lefebvre, and P. Christol, “Simple analytical method for calculating exciton binding energies in semiconductor quantum wells,” Phys. Rev. B 46, 4092–4101 (1992).

J. C. Maan, G. Belle, A. Fasolino, M. Altarelli, and K. Ploog, “Magneto-optical determination of exciton binding energy in GaAs-Ga1-xAlxAs quantum wells,” Phys. Rev. B 30, 2253–2256 (1984).

S. W. Chang, S. L. Chuang, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, “Slow light using excitonic population oscillation,” Phys. Rev. B 70, 235333 (2004).

Phys. Rev. Lett. (2)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electro absorption in quantum well structure: the quantum confined Stark shift,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Proc. IEEE (1)

C. J. Chang-Hasnian, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003).
[CrossRef]

Solid State Commun. (1)

M. Bugajski, W. Kuszko, and K. Regifiski, “Diamagnetic shift of exciton energy levels in GaAs-Ga1-xAlxAs quantum wells,” Solid State Commun. 60, 669–673 (1986).
[CrossRef]

Other (3)

R. S. Knox, Theory of Excitons (Academic, 1963).

J. B. Khurgin and R. S. Tucker, Slow Light Science and Applications (CRC, 2009).

H. Kaatuzian, Photonics, 2nd ed. (AUT, 2009), Vol. 2, in Persian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Slow light device with Al0.3Ga0.7As/GaAs multiple quantum well in presence of pump and signal described in [5].

Fig. 2.
Fig. 2.

(a) Absorbance, (b) real part of refractive index, and (c) SDF plotted as a function of detuning between signal and pump, due to excitonic population oscillation in GaAs/AlGaAs quantum wells described in [5].

Fig. 3.
Fig. 3.

Variations of binding energy as a function of well width for GaAs/Al0.3Ga0.7As MQW.

Fig. 4.
Fig. 4.

Frequency shift of (a) absorbance, (b) real part of refractive index, and (c) SDF due to different QW sizes.

Fig. 5.
Fig. 5.

Variations of (a) real part of refractive index and (b) SDF of slow light device with three different number of quantum wells as a function of detuning. The solid line is experimental results presented by Ref. [5].

Fig. 6.
Fig. 6.

Maximum value of SDF as a function of number of QWs with the well width of 135 Å.

Fig. 7.
Fig. 7.

Response of the maximum value of SDF to both the simultaneous alterations of well width and applied magnetic field.

Fig. 8.
Fig. 8.

Central frequency shift due to variations in (a) QW size, (b) applied magnetic field, and (c) both QW size and applied magnetic field.

Fig. 9.
Fig. 9.

Frequency shift of (a) absorbance, (b) real part of refractive index, and (c) SDF of slow light device with different QW size and applied magnetic field. The solid line is the experimental result of Ref. [5].

Fig. 10.
Fig. 10.

Variations of the maximum values of the SDF with changes in the number of QWs and applied magnetic field.

Fig. 11.
Fig. 11.

Central frequency shift due to variation in (a) number of QWs, (b) applying magnetic field, and (c) both applied magnetic field and number of QWs.

Fig. 12.
Fig. 12.

Effects of variation in number of QWs and applying a magnetic field on (a) real part of refractive index and (b) SDF of slow light device. The solid line is the experimental result of Ref. [5].

Fig. 13.
Fig. 13.

Variations of the maximum value of SDF as a function of well width and an electric field.

Fig. 14.
Fig. 14.

Frequency shift of the central frequency due to variation in size of QWs and applying an electric field. (a) Constant electric field, (b) constant well width, and (c) variation in both electric field and well width.

Fig. 15.
Fig. 15.

Frequency shift of (a) absorbance, (b) real part of refractive index, and (c) SDF of a slow light device with different QW sizes and an applied electric field. The solid line is the experimental result of Ref. [5].

Fig. 16.
Fig. 16.

Variations of the SDF as a function of the number of QWs with an applied electric field.

Fig. 17.
Fig. 17.

Shift of central frequency caused by (a) changes in the number of QWs with constant electric field, (b) different amounts of applied electric field with a constant number of QWs, and (c) variation in both the applied electrical field and the number of QWs.

Fig. 18.
Fig. 18.

Effects of variation in number of QWs and applying an electric field on (a) real part of refractive index and (b) SDF of a slow light device. The solid line is the experimental result of Ref. [5].

Tables (1)

Tables Icon

Table 1. Definitions of the Symbols

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

vg=cng=cn(ω)+ωdn(ω)dω.
Pex,σt=i[ωexiΓ2(Nex)]Pex,σiμ12ε(t)2h¯Nex,σ,
Nex,σt=Γ1(Nex,σNex,σ(0))Γs(Nex,σNex,σ¯)+4Im[μ12ε(t)2h¯Pex,σ],
ns(ωs)=εs(ωs),
As(ωs)=2ωscIm[ns(ωs)],
Rs(ωs)=Re[ns(ωs)]+ωsRe[ns(ωs)]ωs.
Eb=E0*(10.5e(2kb+Lw)/2α0*)2,
Eex=Eband gapEbinding energy.
Leff=(Lwell×Number of QWs).
E=(N1scosπzeLcosπzhL)2Hdzedzhdxdy,
H=e2B28μ±c2(x2+y2).

Metrics