Abstract

A fiber Bragg grating (FBG) accelerometer using transverse forces is more sensitive than one using axial forces with the same mass of the inertial object, because a barely stretched FBG fixed at its two ends is much more sensitive to transverse forces than axial ones. The spring-mass theory, with the assumption that the axial force changes little during the vibration, cannot accurately predict its sensitivity and resonant frequency in the gravitational direction because the assumption does not hold due to the fact that the FBG is barely prestretched. It was modified but still required experimental verification due to the limitations in the original experiments, such as the (1) friction between the inertial object and shell; (2) errors involved in estimating the time-domain records; (3) limited data; and (4) large interval 5Hz between the tested frequencies in the frequency-response experiments. The experiments presented here have verified the modified theory by overcoming those limitations. On the frequency responses, it is observed that the optimal condition for simultaneously achieving high sensitivity and resonant frequency is at the infinitesimal prestretch. On the sensitivity at the same frequency, the experimental sensitivities of the FBG accelerometer with a 5.71 gram inertial object at 6 Hz (1.29, 1.19, 0.88, 0.64, and 0.31nm/g at the 0.03, 0.69, 1.41, 1.93, and 3.16 nm prestretches, respectively) agree with the static sensitivities predicted (1.25, 1.14, 0.83, 0.61, and 0.29nm/g, correspondingly). On the resonant frequency, (1) its assumption that the resonant frequencies in the forced and free vibrations are similar is experimentally verified; (2) its dependence on the distance between the FBG’s fixed ends is examined, showing it to be independent; (3) the predictions of the spring-mass theory and modified theory are compared with the experimental results, showing that the modified theory predicts more accurately. The modified theory can be used more confidently in guiding its design by predicting its static sensitivity and resonant frequency, and may have applications in other fields for the scenario where the spring-mass theory fails.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Graham-Rowe, “Sensors take the strain,” Nat. Photonics 1, 307–309 (2007).
    [Crossref]
  2. M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2, 153–154 (2008).
    [Crossref]
  3. A. Gusarov, “Long-term exposure of fiber bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57, 2044–2048 (2010).
    [Crossref]
  4. P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
    [Crossref]
  5. E. Udd, “Fiber grating sensors for structural health monitoring of aerospace structures,” Proc. SPIE 6167, 61670C (2006).
    [Crossref]
  6. K. Li, Z. A. Zhou, and A. Liu, “A high sensitive fiber Bragg grating cryogenic temperature sensor,” Chin. Opt. Lett. 7, 121–123 (2009).
  7. A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control (Springer-Verlag, 1993).
  8. D. E. Weiss, “Design and application of accelerometers,” in Proceedings of SESA (now SEM) (Addison-Wesley, 1947), Vol. IV , pp. 89–99.
  9. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
    [Crossref]
  10. M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
    [Crossref]
  11. S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.
  12. L. Sun, Y. Shen, and C. Cao, “A novel FBG-based accelerometer with high sensitivity and temperature compensation,” Proc. SPIE 7292, 729214 (2009).
    [Crossref]
  13. J. Zhang, X. Qiao, M. Hu, Z. Feng, H. Gao, Y. Yang, and R. Zhou, “Proposal of metal bellows-based fiber Bragg grating accelerometer,” Chin. Opt. Lett. 9, 090606 (2011).
    [Crossref]
  14. P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
    [Crossref]
  15. Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
    [Crossref]
  16. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
    [Crossref]
  17. K. Li, T. H. T. Chan, M. H. Yau, T. Nguyen, D. P. Thambiratnam, and H. Y. Tam, “Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity,” Appl. Opt. 52, 6401–6410 (2013).
    [Crossref]
  18. K. Li, M. H. Yau, T. H. T. Chan, D. Thambiratnam, and H. Y. Tam, “Fiber Bragg grating strain modulation based on nonlinear string transverse-force amplifier,” Opt. Lett. 38, 311–313 (2013).
    [Crossref]

2013 (2)

2012 (3)

P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
[Crossref]

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

2011 (1)

2010 (1)

A. Gusarov, “Long-term exposure of fiber bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57, 2044–2048 (2010).
[Crossref]

2009 (2)

K. Li, Z. A. Zhou, and A. Liu, “A high sensitive fiber Bragg grating cryogenic temperature sensor,” Chin. Opt. Lett. 7, 121–123 (2009).

L. Sun, Y. Shen, and C. Cao, “A novel FBG-based accelerometer with high sensitivity and temperature compensation,” Proc. SPIE 7292, 729214 (2009).
[Crossref]

2008 (1)

M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2, 153–154 (2008).
[Crossref]

2007 (1)

D. Graham-Rowe, “Sensors take the strain,” Nat. Photonics 1, 307–309 (2007).
[Crossref]

2006 (1)

E. Udd, “Fiber grating sensors for structural health monitoring of aerospace structures,” Proc. SPIE 6167, 61670C (2006).
[Crossref]

1998 (1)

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[Crossref]

1996 (1)

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[Crossref]

1994 (1)

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Althouse, B. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[Crossref]

Andre, P. S.

P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
[Crossref]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

Bang, O.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

Bayon, J. F.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[Crossref]

Bernage, P.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Braga, A. M. B.

S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.

Cao, C.

L. Sun, Y. Shen, and C. Cao, “A novel FBG-based accelerometer with high sensitivity and temperature compensation,” Proc. SPIE 7292, 729214 (2009).
[Crossref]

Cetier, P.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Chan, T. H. T.

Costa Antunes, P. F.

P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
[Crossref]

Douay, M.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Feng, Z.

Ferdinand, P.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Fertein, E.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Gao, H.

Georges, T.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Graham-Rowe, D.

D. Graham-Rowe, “Sensors take the strain,” Nat. Photonics 1, 307–309 (2007).
[Crossref]

Guo, Y. X.

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

Gusarov, A.

A. Gusarov, “Long-term exposure of fiber bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57, 2044–2048 (2010).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

Hu, M.

Johnson, G. A.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[Crossref]

Jones, M.

M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2, 153–154 (2008).
[Crossref]

Kersey, A. D.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[Crossref]

Lahoreau, F.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Lawrence, A.

A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control (Springer-Verlag, 1993).

Li, K.

Liu, A.

Marques, C. A.

P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
[Crossref]

Meng, H.

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

Monerie, M.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Morikawa, S. R. K.

S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.

Nguyen, T.

Niay, P.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Qiao, X.

Regazzi, R. D.

S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.

Ribeiro, A. S.

S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.

Rougeault, S.

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

Shen, Y.

L. Sun, Y. Shen, and C. Cao, “A novel FBG-based accelerometer with high sensitivity and temperature compensation,” Proc. SPIE 7292, 729214 (2009).
[Crossref]

Stefani, A.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

Sun, L.

L. Sun, Y. Shen, and C. Cao, “A novel FBG-based accelerometer with high sensitivity and temperature compensation,” Proc. SPIE 7292, 729214 (2009).
[Crossref]

Tam, H. Y.

Thambiratnam, D.

Thambiratnam, D. P.

Todd, M. D.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[Crossref]

Udd, E.

E. Udd, “Fiber grating sensors for structural health monitoring of aerospace structures,” Proc. SPIE 6167, 61670C (2006).
[Crossref]

Valente, L. C. G.

S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.

Varum, H.

P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
[Crossref]

Vohra, S. T.

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[Crossref]

Weiss, D. E.

D. E. Weiss, “Design and application of accelerometers,” in Proceedings of SESA (now SEM) (Addison-Wesley, 1947), Vol. IV , pp. 89–99.

Wen, X. Y.

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

Yang, Y.

Yau, M. H.

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

Zhang, D. S.

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

Zhang, J.

Zhou, R.

Zhou, Z. A.

Zhou, Z. D.

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (2)

IEEE Photon. Technol. Lett. (4)

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of a fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[Crossref]

M. D. Todd, G. A. Johnson, B. A. Althouse, and S. T. Vohra, “Flexural beam-based fiber Bragg grating accelerometers,” IEEE Photon. Technol. Lett. 10, 1605–1607 (1998).
[Crossref]

P. Niay, P. Bernage, M. Douay, E. Fertein, F. Lahoreau, J. F. Bayon, T. Georges, M. Monerie, P. Ferdinand, S. Rougeault, and P. Cetier, “Behavior of Bragg gratings, written in germanosilicate fibers, against gamma-ray exposure at low-dose rate,” IEEE Photon. Technol. Lett. 6, 1350–1352 (1994).
[Crossref]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24, 763–765 (2012).
[Crossref]

IEEE Sens. J. (1)

P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, “Biaxial optical accelerometer and high-angle inclinometer with temperature and cross-axis insensitivity,” IEEE Sens. J. 12, 2399–2406 (2012).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

A. Gusarov, “Long-term exposure of fiber bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57, 2044–2048 (2010).
[Crossref]

Nat. Photonics (2)

D. Graham-Rowe, “Sensors take the strain,” Nat. Photonics 1, 307–309 (2007).
[Crossref]

M. Jones, “Structural-health monitoring: a sensitive issue,” Nat. Photonics 2, 153–154 (2008).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (3)

L. Sun, Y. Shen, and C. Cao, “A novel FBG-based accelerometer with high sensitivity and temperature compensation,” Proc. SPIE 7292, 729214 (2009).
[Crossref]

Y. X. Guo, D. S. Zhang, H. Meng, X. Y. Wen, and Z. D. Zhou, “Metal packaged fiber Bragg grating accelerometer,” Proc. SPIE 8421, 84213V (2012).
[Crossref]

E. Udd, “Fiber grating sensors for structural health monitoring of aerospace structures,” Proc. SPIE 6167, 61670C (2006).
[Crossref]

Other (3)

S. R. K. Morikawa, A. S. Ribeiro, R. D. Regazzi, L. C. G. Valente, and A. M. B. Braga, “Triaxial Bragg grating accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 95–98.

A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and Control (Springer-Verlag, 1993).

D. E. Weiss, “Design and application of accelerometers,” in Proceedings of SESA (now SEM) (Addison-Wesley, 1947), Vol. IV , pp. 89–99.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental setup. Distances between the fixed ends of the FBGs are 50 and 24 mm.

Fig. 2.
Fig. 2.

Time domain records at the different frequencies when the FBGs across the 50 and 24 mm gaps are 0.36 and 0.16 nm prestretched, respectively. 10 s data at 1.1 and 2.8 Hz are extracted to carry out FFT.

Fig. 3.
Fig. 3.

Time domain records of the frequency responses when the FBG across the 50 mm gap is 0.69, 1.11, 1.96, and 3.22 nm prestretched, and the FBG across the 24 mm gap is 0.77, 1.54, and 2.73 nm prestretched.

Fig. 4.
Fig. 4.

Frequency response of the FBG accelerometer with the 5.71 gram inertial object across the 50 mm gap at different prestretches.

Fig. 5.
Fig. 5.

Frequency response of the FBG accelerometer with the 3 gram inertial object across the 24 mm gap at different prestretches.

Fig. 6.
Fig. 6.

Records of the piezo accelerometer and FBG accelerometer with the 5.71 gram inertial object across the 50 mm gap tested at 6 Hz at different accelerations and prestretches.

Fig. 7.
Fig. 7.

Relationships achieved from Fig. 6 between the piezo and FBG accelerometers.

Fig. 8.
Fig. 8.

Theoretical simulation of the resonant wavelength responses of an FBG at the 0.03, 0.69, 1.41, 1.93, and 3.16 nm prestretches under transverse forces between 0.0336 and 0.0783 N.

Fig. 9.
Fig. 9.

Theoretical simulation of the wavelength shifts of an FBG with a 5.71 gram inertial object at its middle at those prestretches in Fig. 8 under accelerations between ±0.4g.

Fig. 10.
Fig. 10.

Records of the FBG across the 50 mm gap at 0.35 nm prestretches by the knock-excitation method using five different inertial objects.

Fig. 11.
Fig. 11.

Five 1 s data extracted from the records in Fig. 10 for the five inertial objects and their FFT spectra.

Fig. 12.
Fig. 12.

Relationship between the percentage error and stretch ratio at the different distances between the FBG’s fixed ends.

Tables (4)

Tables Icon

Table 1. Sensitivities of the Two FBG Accelerometers When the FBG Across the 50 mm Gap was 0.36 nm Prestretched and the FBG across the 24 mm Gap 0.16 nm Prestretched

Tables Icon

Table 2. Comparison between the Resonant Frequencies of the FBG Accelerometer with the 5.71 gram Inertial Object across the 50 mm Gap at Different Prestretches Achieved by the Frequency Responses (Forced Vibration) and Knock-Excitation Experiments (Free Vibration)

Tables Icon

Table 3. Comparison between the Resonant Frequencies of the FBG Accelerometer with the 3 gram Inertial Object across the 24 mm Gap at Different Prestretches Achieved by the Frequency Responses (Forced Vibration) and Knock-Excitation Experiments (Free Vibration)

Tables Icon

Table 4. Comparisons of the Resonant Frequencies of the FBG Accelerometer with the 5.71 gram Inertial Object across the 50 mm Gap at the Five Different Prestretches Found by the Frequency Responses in Fig. 4, Spring-Mass Theory and Modified Theory

Metrics