Abstract

In recent years, graphene and its compounds (e.g., oxides) have been used as saturable absorbers in passive Q-switched and mode-locked lasers, leading to the fabrication of compact pulsed fiber lasers. In this article, we study the operation of a Q-switched ytterbium-doped fiber ring laser based on a composite saturable absorber made of graphene oxide and chromium. We show that the addition of a thin layer of chromium can lead to pulse durations ranging from 3.5 to 9.4 μs and subsequently increasing the laser peak power.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University, 2012).
  2. I. M. Tsidikovskii, Band Structures of Semiconductors (Oxford, 1982).
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [CrossRef]
  4. A. Martinez and Z. Sun, “Nanotubes and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [CrossRef]
  5. J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier, 2013).
  6. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
    [CrossRef]
  7. Y. Yap, R. M. De La Rue, C. Pua, S. Harun, and H. Ahmad, “Graphene-based Q-switched pulsed fiber laser in a linear configuration,” Chin. Opt. Lett. 10, 041405 (2012).
    [CrossRef]
  8. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
    [CrossRef]
  9. H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
    [CrossRef]
  10. H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
    [CrossRef]
  11. B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
    [CrossRef]
  12. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
    [CrossRef]
  13. A. E. Siegman, Lasers (Stanford University Science Books, 1986).
  14. H. Zhao, Q. Lou, J. Zhou, F. Zhang, J. Dong, Y. Wei, L. Li, and Z. Wang, “An acousto-optic Q-switched fiber laser using China-made double-cladding fiber,” Chin. Opt. Lett. 5, 522–523 (2007).
  15. Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).
  16. M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Péres-Millán, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
    [CrossRef]
  17. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18, 7714–7723 (2010).
    [CrossRef]
  18. T. Y. Tsai, Y. C. Fang, and S. H. Huang, “Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,” Opt. Express 18, 10049–10054 (2010).
    [CrossRef]
  19. X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
    [CrossRef]
  20. S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
    [CrossRef]
  21. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  22. L. Su, D. Zhang, H. Li, J. Du, Y. Xu, X. Liang, G. Zhan, and J. Xu, “Passively Q-swicthed Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber,” Opt. Express 15, 2375–2379 (2007).
    [CrossRef]
  23. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photon. Res. 1, 52–57 (2013).
    [CrossRef]
  24. S. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
    [CrossRef]
  25. A. M. Heidi, Z. Li, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
    [CrossRef]
  26. http://www.kemix.com .
  27. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
    [CrossRef]
  28. D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
    [CrossRef]
  29. J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
    [CrossRef]
  30. Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
    [CrossRef]
  31. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178–2185 (2008).
    [CrossRef]
  32. R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
    [CrossRef]
  33. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers and plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009).
    [CrossRef]
  34. Fullwave 6.1 RSOFT Design Group, 2008 [Online] Available: http://optics.synopys.com .
  35. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [CrossRef]
  36. M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
    [CrossRef]
  37. L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by the Z-scan technique,” Braz. J. Phys. 24, 498–501 (1994).

2013 (7)

A. Martinez and Z. Sun, “Nanotubes and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[CrossRef]

H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
[CrossRef]

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photon. Res. 1, 52–57 (2013).
[CrossRef]

A. M. Heidi, Z. Li, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
[CrossRef]

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
[CrossRef]

2012 (5)

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

Y. Yap, R. M. De La Rue, C. Pua, S. Harun, and H. Ahmad, “Graphene-based Q-switched pulsed fiber laser in a linear configuration,” Chin. Opt. Lett. 10, 041405 (2012).
[CrossRef]

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
[CrossRef]

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

2010 (4)

2009 (4)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers and plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Péres-Millán, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106–1112 (2006).
[CrossRef]

2005 (1)

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
[CrossRef]

2004 (1)

X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

1998 (1)

S. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1994 (1)

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by the Z-scan technique,” Braz. J. Phys. 24, 498–501 (1994).

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Ahmad, H.

H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
[CrossRef]

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
[CrossRef]

Y. Yap, R. M. De La Rue, C. Pua, S. Harun, and H. Ahmad, “Graphene-based Q-switched pulsed fiber laser in a linear configuration,” Chin. Opt. Lett. 10, 041405 (2012).
[CrossRef]

Alam, S. U.

Andrés, M. V.

Bachmatiuk, A.

J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier, 2013).

Bai, J.

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Balembois, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Barbosa, C. L.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
[CrossRef]

Becker, M.

Bokdam, M.

M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Brenier, A.

X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Brocks, G.

M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
[CrossRef]

Cazo, R. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
[CrossRef]

Chen, H.

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Chen, X.

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Chen, Y.

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

Dang, Z. M.

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

De La Rue, R. M.

Delgado-Pinar, M.

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Díez, A.

Dong, J.

Druon, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Du, J.

Fang, Y. C.

Ferrari, A. C.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Feve, J. P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Forget, S.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Fu, L.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Fuse, K.

Georges, P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Gong, X.

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

Harun, S.

Harun, S. W.

H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
[CrossRef]

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
[CrossRef]

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Hattori, H. T.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers and plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009).
[CrossRef]

H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178–2185 (2008).
[CrossRef]

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
[CrossRef]

Heidi, A. M.

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Hu, G. H.

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

Huang, B.

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

Huang, S. H.

Huang, Y.

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Ibsen, M.

Jackson, S.

S. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

Jagadish, C.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Jiang, M.

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Jovanovic, N.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Katsnelson, M. I.

M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University, 2012).

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kelly, B.

Kelly, P. J.

M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
[CrossRef]

Khomyakov, P. A.

M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
[CrossRef]

King, T. A.

S. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Landru, N.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Li, H.

Li, L.

Li, Z.

Liang, X.

Lin, J.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Lin, Y.

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

Liu, D.

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Lou, Q.

Lu, B.

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Luo, Z.

Y. Chen, Y. Lin, X. Gong, B. Huang, Z. Luo, and Y. Huang, “Acousto-optic Q-switched self-frequency-doubling Er:Yb:YAl3(BO3)4 laser at 800 nm,” Opt. Lett. 37, 1555–1567 (2012).

Marshall, G. D.

Martinez, A.

Martínez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Muhammad, F. D.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
[CrossRef]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Oliveira, L. C.

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by the Z-scan technique,” Braz. J. Phys. 24, 498–501 (1994).

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

Parkinson, P.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Péres-Millán, P.

Phelan, R.

Premaratne, M.

Pua, C.

Ren, Z.

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Richardson, D. J.

Rothhardt, M.

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Rukhlenko, I. D.

Rümmeli, M. H.

J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier, 2013).

Schäffel, F.

J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier, 2013).

Schneider, V. M.

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
[CrossRef]

Shardlow, P. C.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (Stanford University Science Books, 1986).

Solis-Fernández, P.

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

Su, L.

Sun, Z.

A. Martinez and Z. Sun, “Nanotubes and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Tan, H. H.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Tang, Y.

Tascón, J. M. D.

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

Thambiratnam, K.

H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
[CrossRef]

Tian, J.

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Tsai, T. Y.

Tsidikovskii, I. M.

I. M. Tsidikovskii, Band Structures of Semiconductors (Oxford, 1982).

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

Wang, D.

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

Wang, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Wang, J.

X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Wang, Z.

Warner, J. H.

J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier, 2013).

Wei, Y.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Weng, Z.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Williams, R. J.

Withford, M. J.

Xu, B.

Xu, J.

Xu, Y.

Yamashita, S.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Yang, J.

Yap, Y.

Zalvidea, D.

Zha, J. W.

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

Zhan, G.

Zhang, D.

Zhang, F.

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Zhang, X.

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Zhao, H.

Zhao, J.

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

Zhou, J.

Zilio, S. C.

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by the Z-scan technique,” Braz. J. Phys. 24, 498–501 (1994).

Zulkifli, A. Z.

H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
[CrossRef]

Zulkifli, M. Z.

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21, 3874–3899 (2009).
[CrossRef]

Appl. Opt. (1)

Braz. J. Phys. (1)

L. C. Oliveira and S. C. Zilio, “Chromium-doped saturable absorbers investigated by the Z-scan technique,” Braz. J. Phys. 24, 498–501 (1994).

Chin. Opt. Lett. (2)

IEEE J. Quantum Electron. (1)

S. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

IEEE Photon. J. (2)

H. Ahmad, F. D. Muhammad, M. Z. Zulkifli, and S. W. Harun, “Graphene oxide based saturable absorber for all-fiber Q-switching with a simple optical deposition technique,” IEEE Photon. J. 4, 2205–2213 (2012).
[CrossRef]

H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “2.0 μm Q-switched thulium-doped fiber with graphene oxide saturable absorber,” IEEE Photon. J. 5, 1501108 (2013).
[CrossRef]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

J. Phys. D (1)

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, “A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications,” J. Phys. D 45, 305102 (2012).
[CrossRef]

Langmuir (1)

J. I. Paredes, S. Villar-Rodil, P. Solis-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphene oxid,” Langmuir 25, 5957–5968 (2009).
[CrossRef]

Laser Phys. (1)

B. Lu, H. Chen, M. Jiang, X. Chen, Z. Ren, and J. Bai, “Graphene-based passive Q-switching for a 2 μm thulium doped fiber laser,” Laser Phys. 23, 045111 (2013).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

R. M. Cazo, C. L. Barbosa, H. T. Hattori, and V. M. Schneider, “Steady-state analysis of a directional square lattice band-edge photonic crystal lasers,” Microw. Opt. Technol. Lett. 46, 210–214 (2005).
[CrossRef]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[CrossRef]

A. Martinez and Z. Sun, “Nanotubes and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[CrossRef]

Opt. Commun. (1)

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Feve, J. Lin, and Z. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259, 816–819 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (1)

X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 nm and 914 nm,” Opt. Mater. 26, 293–296 (2004).
[CrossRef]

Photon. Res. (1)

Phys. Rev. B (1)

M. Bokdam, P. A. Khomyakov, G. Brocks, and P. J. Kelly, “Field effect doping of graphene in metal/dielectric/graphene heterostructures: a model based upon first-principles calculations,” Phys. Rev. B 87, 075414 (2013).
[CrossRef]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44, 1082–1091 (2012).
[CrossRef]

Polymer (1)

D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, “Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold,” Polymer 54, 1916–1922 (2013).
[CrossRef]

Other (6)

http://www.kemix.com .

Fullwave 6.1 RSOFT Design Group, 2008 [Online] Available: http://optics.synopys.com .

A. E. Siegman, Lasers (Stanford University Science Books, 1986).

J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications (Elsevier, 2013).

M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University, 2012).

I. M. Tsidikovskii, Band Structures of Semiconductors (Oxford, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Raman spectrum of the graphene oxide formed on the fiber’s end.

Fig. 2.
Fig. 2.

Linear transmissivity (solid curve), reflectivity (dotted curve), and absorption (solid curve with square markers) for different thicknesses of chromium.

Fig. 3.
Fig. 3.

(a) Schematic of the experimental setup using in our experiments. (b) Photograph of the constructed laser.

Fig. 4.
Fig. 4.

(a) Pulse generated by graphene oxide Q-switched ytterbium laser. (b) Sequence of pulses at a repetition rate of 1 kHz.

Fig. 5.
Fig. 5.

(a) Sequence of pulses at Ppump=250mW. (b) Power spectra of the Q-switched laser with graphene oxide only.

Fig. 6.
Fig. 6.

Duration of pulses as a function of the thickness of chromium layer.

Fig. 7.
Fig. 7.

(a) Single pulse at peak pump=200mW. (b) Two pulses at peak pump=300mW.

Fig. 8.
Fig. 8.

Absorption of graphene oxide (dotted curve), graphene oxide, and 30 nm of chromium and graphene oxide as a function of the circulating power. The inset shows the absorption for low powers for 20 nm of chromium (solid curve with triangular marker), 30 nm (solid curve) and 40 nm (solid curve with rhombic marker) plus graphene oxide.

Fig. 9.
Fig. 9.

Average circulating power (Pcirc) as a function of the peak pump power (Ppump).

Fig. 10.
Fig. 10.

(a) Duration of the main pulse as a function of peak pump power (Ppump). (b) Main peak at Ppump=400mW.

Tables (1)

Tables Icon

Table 1. Measured Reflectivity (Rlp) and Transmissivity (Tlp) as a Function of the Chromium Thickness (lcr) for Low Incident Power (P=5mW); Absorption is Calculated as Alp=1RlpTlp

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ag,sl=πcμoe22h,
ago=anl1+PcircIs,goAeff+al,
atotal=ago+absamax(1ago)[1exp(αcrlcr1+PcircIs,crAeff)],
Pcirc=1Tr0.5Tr0.5TrPenv(t)dt,
PpeakPcircTr/tmainpeak,

Metrics