Abstract

A compound eye has the advantages of a large field of view, high sensitivity, and compact structure, showing that it can be applicable for 3D object detection. In this work, an artificial compound eye system is developed for 3D object detection, consisting of a layer of lenslets and a prism-like beam-steering lens. A calibration method is developed for this system, with which the correspondences between incident light rays and the relevant image points can be obtained precisely using an active calibration pattern at multiple positions. Theoretically, calibration patterns at two positions are sufficient for system calibration, although more positions will increase the accuracy of the result. 3D positions of point objects are calculated to evaluate the system, which are obtained by the intersection of multiple incident light rays in the least-squares sense. Experimental results show that the system can detect an object with angular accuracy of better than 1 mrad, demonstrating the feasibility of the proposed compound eye system. With a 2D scanning device, the system can be extended for general object detection in 3D space.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18, 18125–18137 (2010).
    [CrossRef]
  2. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  3. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004).
    [CrossRef]
  4. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1, R1–R16 (2006).
    [CrossRef]
  5. R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
    [CrossRef]
  6. R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.
  7. L. Li and A. Y. Yi, “Design and fabrication of a freeform prism array for 3D microscopy,” J. Opt. Soc. Am. A 27, 2613–2620 (2010).
    [CrossRef]
  8. L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (2009).
  9. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51, 1843–1852 (2012).
    [CrossRef]
  10. H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express 21, 22232–22245 (2013).
    [CrossRef]
  11. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [CrossRef]
  12. L. P. Lee, “Inspirations from biological optics for advanced photonic systems,” Science 310, 1148–1150 (2005).
    [CrossRef]
  13. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
    [CrossRef]
  14. F. Guo, Y. P. Zheng, and W. Keyi, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).
  15. M. Nixon and A. S. Aguado, Feature Extraction and Image Processing, 2nd ed. (Academic, 2008), p. 424.
  16. R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344 (1987).
  17. Z. Zhengyou, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
  18. J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1066–1077 (2000).
  19. J.-Y. Bouguet, “Camera calibration toolbox for MATLAB,” (2003), retrieved http://www.vision.caltech.edu/bouguetj/calib_doc/ .
  20. R. Willson, “Implementation of the Tsai camera calibration algorithm,” retrieved http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html .

2013

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

H. Zhang, L. Li, D. L. McCray, S. Scheiding, N. J. Naples, A. Gebhardt, S. Risse, R. Eberhardt, A. Tünnermann, and A. Y. Yi, “Development of a low cost high precision three-layer 3D artificial compound eye,” Opt. Express 21, 22232–22245 (2013).
[CrossRef]

2012

L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51, 1843–1852 (2012).
[CrossRef]

F. Guo, Y. P. Zheng, and W. Keyi, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

2010

2009

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (2009).

2006

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1, R1–R16 (2006).
[CrossRef]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

2005

L. P. Lee, “Inspirations from biological optics for advanced photonic systems,” Science 310, 1148–1150 (2005).
[CrossRef]

2004

2001

2000

Z. Zhengyou, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).

J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1066–1077 (2000).

1987

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344 (1987).

Aguado, A. S.

M. Nixon and A. S. Aguado, Feature Extraction and Image Processing, 2nd ed. (Academic, 2008), p. 424.

Choi, K.-J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Duparré, J. W.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1, R1–R16 (2006).
[CrossRef]

Eberhardt, R.

Gebhardt, A.

Guo, F.

F. Guo, Y. P. Zheng, and W. Keyi, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

Heikkila, J.

J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1066–1077 (2000).

Hornsey, R.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Ichioka, Y.

Ishida, K.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Keyi, W.

F. Guo, Y. P. Zheng, and W. Keyi, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Kim, R.-H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Kitamura, Y.

Kondou, N.

Krishnasamy, R.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

Kumagai, T.

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

L. P. Lee, “Inspirations from biological optics for advanced photonic systems,” Science 310, 1148–1150 (2005).
[CrossRef]

Li, L.

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Masaki, Y.

McCray, D. L.

Miyamoto, M.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Naples, N. J.

Nixon, M.

M. Nixon and A. S. Aguado, Feature Extraction and Image Processing, 2nd ed. (Academic, 2008), p. 424.

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Pepic, S.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

Risse, S.

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Scheiding, S.

Shen, E.

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

Shogenji, R.

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Tanida, J.

Thomas, P.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

Thomas, P. J.

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

Tsai, R.

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344 (1987).

Tünnermann, A.

Wippermann, F. C.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1, R1–R16 (2006).
[CrossRef]

Wong, W.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Yamada, K.

Yi, A. Y.

Yip, K.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

Zhang, H.

Zheng, Y. P.

F. Guo, Y. P. Zheng, and W. Keyi, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

Zhengyou, Z.

Z. Zhengyou, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).

Appl. Opt.

Bioinsp. Biomim.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1, R1–R16 (2006).
[CrossRef]

IEEE J. Robot. Autom.

R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344 (1987).

IEEE Trans. Pattern Anal. Mach. Intell.

Z. Zhengyou, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).

J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1066–1077 (2000).

J. Micromech. Microeng.

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19, 105010 (2009).

J. Opt. Soc. Am. A

Nature

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Opt. Express

Proc. SPIE

F. Guo, Y. P. Zheng, and W. Keyi, “Lenses matching of compound eye for target positioning,” Proc. SPIE 8420, 84200B (2012).

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip, and R. Krishnasamy, “Electronic compound-eye image sensor: construction and calibration,” Proc. SPIE 5301, 13–24 (2004).
[CrossRef]

Science

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

L. P. Lee, “Inspirations from biological optics for advanced photonic systems,” Science 310, 1148–1150 (2005).
[CrossRef]

Other

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. J. Thomas, “High precision target tracking with a compound-eye image sensor,” in Canadian Conference on Electrical and Computer Engineering, Vol. 2314 (IEEE, 2004), 2319–2323.

J.-Y. Bouguet, “Camera calibration toolbox for MATLAB,” (2003), retrieved http://www.vision.caltech.edu/bouguetj/calib_doc/ .

R. Willson, “Implementation of the Tsai camera calibration algorithm,” retrieved http://www-cgi.cs.cmu.edu/afs/cs.cmu.edu/user/rgw/www/TsaiCode.html .

M. Nixon and A. S. Aguado, Feature Extraction and Image Processing, 2nd ed. (Academic, 2008), p. 424.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) Schematic structure of the compound eye system, including an array of plano-convex lenslets and a meniscus lens for beam-steering. The plano-convex lenslets are almost evenly distributed on a spherical substrate. (b) Labeling of the plano-convex lenslets. The lenslets are labeled from 1 to 169 consecutively. (c) The developed compound eye system before and (d) after assembly.

Fig. 2.
Fig. 2.

Ray tracing of the compound eye system in ZEMAX. A small portion of the large meniscus lens affords prism-like properties for a small field of view of each microlens.

Fig. 3.
Fig. 3.

Incident beam ray tracing from different angles (a)–(c) without and (d)–(f) with meniscus lens. The normal directions relative to Z axis are 0°, 27°, and 45°, respectively.

Fig. 4.
Fig. 4.

Images of an array of circular light spots. (a) System calibration setup and light-spots array as calibration target. (b)–(i) Images by lenslets 1, 2, 3, 4, 28, 30, 33, 78, 80, 82, and 85, respectively.

Fig. 5.
Fig. 5.

Object-detection principle of the compound eye system. The 3D coordinate of point P is detected by the intersection of multiple incident light rays L1,,Lk.

Fig. 6.
Fig. 6.

Compound eye system calibration based on multiposition camera calibration. (a) World coordinate system setup. (b) Traditional camera calibration at initial position. (c) Camera calibration at another position. (d) Calculation of incident light ray L and map L to the relevant image point I.

Fig. 7.
Fig. 7.

System adjustment of the calibration setup. The LCD and the precision translation stage are adjusted to be perpendicular to each other by a beam splitter.

Fig. 8.
Fig. 8.

Angular detection error of the system. R is the vector between the center of the system O and the target P.

Fig. 9.
Fig. 9.

Angular errors distribution of the detected light spots at different azimuth angle (α) and elevation angle (β).

Fig. 10.
Fig. 10.

Angular detection errors with different number of lenslets. Cluster 1, 85, and 169 consisting of lenslets (1, 2, 9, 10, 11, 19, 20), (70, 71, 84, 85, 86, 99, 100), and (150, 151, 159, 160, 161, 168, 169) are utilized, respectively.

Fig. 11.
Fig. 11.

(a) Home-built 2D laser-scanning device for general object detection. (b) Scanning setup of a white sculpture.

Fig. 12.
Fig. 12.

Rendered mesh of the sculpture from the scanned point cloud of about 10,000 points.

Tables (2)

Tables Icon

Table 1. Elements of the Compound Eye System, with 105 Degree Field-of-View Designed for a 24.6mm×24.6mm CMOS Image Sensor

Tables Icon

Table 2. Spot Aberrations for Different Lenslets D Normal Directions to Z Axis

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{u=11+k1r2·fdx·r1xw+r2yw+r3zw+Txr7xw+r8yw+r9zw+Tz+Cxv=11+k1r2·fdy·r4xw+r5yw+r6zw+Tyr7xw+r8yw+r9zw+Tz+Cy,
R=[r1r2r3r4r5r6r7r8r9],T=[TxTyTz].
L(P1,P2):xx1x2x1=yy1y2y1=z0Δz0.
Δθ=Δr⃗r⃗=(XwX)2+(YwY)2+(ZwZ)2(XwX0)2+(YwY0)2+(ZwZ0)2,

Metrics