Abstract

Floating rust composed of particles and aggregates is the primary product of iron or steel corrosion. Because the floating rust has a porous structure and small thickness, part of the irradiating laser energy can be transmitted through the rust layer and be absorbed by the iron substrate. The adherent force between the floating rust and the metal substrate is weak. In this paper we carried out a series of experiments on this specific rust type to achieve laser derusting and passivating simultaneously. We used a line-scanning method (50% overlapping ratio between adjacent laser spots) to get the nearly average uniform distribution of laser fluence in a large cleaning area. The laser irradiation can directly heat a metal surface to cause thermo-elastic vibration to shake off the rust layer and to cause oxidization to form a protective layer. The most important factor of laser passivating is that the iron surface must be heated to the melting point of iron but not much higher. During this short melting period, on the one hand the iron surface could be oxidized completely; on the other hand the melting of the iron surface could make uniform the oxygen concentration and temperature in the molten iron bath.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal effects of laser marking on microstructure and corrosion properties of stainless steel

M. Švantner, M. Kučera, E. Smazalová, Š. Houdková, and R. Čerstvý
Appl. Opt. 55(34) D35-D45 (2016)

Temperature field analysis of single layer TiO2film components induced by long-pulse and short-pulse lasers

Bin Wang, Hongchao Zhang, Yuan Qin, Xi Wang, Xiaowu Ni, Zhonghua Shen, and Jian Lu
Appl. Opt. 50(20) 3435-3441 (2011)

Laser-induced damage on single-crystal metal surfaces

Yong Jee, Michael F. Becker, and Rodger M. Walser
J. Opt. Soc. Am. B 5(3) 648-659 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription