Abstract

Floating rust composed of particles and aggregates is the primary product of iron or steel corrosion. Because the floating rust has a porous structure and small thickness, part of the irradiating laser energy can be transmitted through the rust layer and be absorbed by the iron substrate. The adherent force between the floating rust and the metal substrate is weak. In this paper we carried out a series of experiments on this specific rust type to achieve laser derusting and passivating simultaneously. We used a line-scanning method (50% overlapping ratio between adjacent laser spots) to get the nearly average uniform distribution of laser fluence in a large cleaning area. The laser irradiation can directly heat a metal surface to cause thermo-elastic vibration to shake off the rust layer and to cause oxidization to form a protective layer. The most important factor of laser passivating is that the iron surface must be heated to the melting point of iron but not much higher. During this short melting period, on the one hand the iron surface could be oxidized completely; on the other hand the melting of the iron surface could make uniform the oxygen concentration and temperature in the molten iron bath.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Daurelio, G. Chita, and M. Cinquepalmi, “Laser surface cleaning, de-rusting, de-painting and de-oxidizing,” Appl. Phys. A 69, S543–S546 (1999).
    [CrossRef]
  2. Z. Wang, X. Zeng, and W. Huang, “Parameters and surface performance of laser removal of rust layer on A3 steel,” Surf. Coat. Technol. 166, 10–16 (2003).
    [CrossRef]
  3. Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
    [CrossRef]
  4. C. T. Kwok, H. C. Man, and F. T. Cheng, “Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surf. Coat. Technol. 99, 295–304 (1998).
    [CrossRef]
  5. A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
    [CrossRef]
  6. A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
    [CrossRef]
  7. Y. Koh and I. Sárady, “Cleaning of corroded iron artefacts using pulsed TEA CO2 and NdYAG lasers,” J. Cult. Herit. 4, 129–133 (2003).
  8. D. L. A. de Faria, S. V. Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc. 28, 873–878 (1997).
    [CrossRef]
  9. S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
    [CrossRef]
  10. J. Fernandes and D. M. Kane, “An overview of experimental research into the laser cleaning of contaminants from surfaces,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific, 2006), p. 29.
  11. F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International 33, 925–933 (1993).
    [CrossRef]
  12. F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
    [CrossRef]
  13. R. Salimbeni, R. Pini, and S. Siano, “A variable pulse width NdYAG laser for conservation,” J. Cult. Herit. 4, 72–76 (2003).
    [CrossRef]
  14. A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 721, 127–129 (1998).
  15. S. Siano, “Principles of laser cleaning in conservation,” in Handbook on the Use of Lasers in Conservation and Conservation Science, M. Schreiner and M. Strlič, eds. (COST office, 2007), p. 26. http://alpha1.infim.ro/cost/pagini/handbook/chapters/prin_cle.htm .
  16. I. Iordanova and V. Antonov, “Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption,” Thin Solid Films 516, 7475–7481 (2008).
    [CrossRef]
  17. R. M. Comell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. (Wiley, 2007), pp. 512–516.
  18. A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
    [CrossRef]

2012 (1)

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

2008 (1)

I. Iordanova and V. Antonov, “Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption,” Thin Solid Films 516, 7475–7481 (2008).
[CrossRef]

2004 (1)

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

2003 (3)

Y. Koh and I. Sárady, “Cleaning of corroded iron artefacts using pulsed TEA CO2 and NdYAG lasers,” J. Cult. Herit. 4, 129–133 (2003).

Z. Wang, X. Zeng, and W. Huang, “Parameters and surface performance of laser removal of rust layer on A3 steel,” Surf. Coat. Technol. 166, 10–16 (2003).
[CrossRef]

R. Salimbeni, R. Pini, and S. Siano, “A variable pulse width NdYAG laser for conservation,” J. Cult. Herit. 4, 72–76 (2003).
[CrossRef]

2000 (2)

A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
[CrossRef]

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

1999 (1)

G. Daurelio, G. Chita, and M. Cinquepalmi, “Laser surface cleaning, de-rusting, de-painting and de-oxidizing,” Appl. Phys. A 69, S543–S546 (1999).
[CrossRef]

1998 (2)

C. T. Kwok, H. C. Man, and F. T. Cheng, “Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surf. Coat. Technol. 99, 295–304 (1998).
[CrossRef]

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 721, 127–129 (1998).

1997 (2)

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

D. L. A. de Faria, S. V. Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc. 28, 873–878 (1997).
[CrossRef]

1993 (1)

F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International 33, 925–933 (1993).
[CrossRef]

1992 (1)

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Agresti, J.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Andreazza, P.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Antonov, V.

I. Iordanova and V. Antonov, “Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption,” Thin Solid Films 516, 7475–7481 (2008).
[CrossRef]

Basillais, A.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Cacciari, I.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Cheng, F. T.

C. T. Kwok, H. C. Man, and F. T. Cheng, “Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surf. Coat. Technol. 99, 295–304 (1998).
[CrossRef]

Chita, G.

G. Daurelio, G. Chita, and M. Cinquepalmi, “Laser surface cleaning, de-rusting, de-painting and de-oxidizing,” Appl. Phys. A 69, S543–S546 (1999).
[CrossRef]

Chong, T. C.

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

Cinquepalmi, M.

G. Daurelio, G. Chita, and M. Cinquepalmi, “Laser surface cleaning, de-rusting, de-painting and de-oxidizing,” Appl. Phys. A 69, S543–S546 (1999).
[CrossRef]

Ciofini, D.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Colaço, R.

A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
[CrossRef]

Comell, R. M.

R. M. Comell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. (Wiley, 2007), pp. 512–516.

Conde, A.

A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
[CrossRef]

Cros, A.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Daurelio, G.

G. Daurelio, G. Chita, and M. Cinquepalmi, “Laser surface cleaning, de-rusting, de-painting and de-oxidizing,” Appl. Phys. A 69, S543–S546 (1999).
[CrossRef]

Dausinger, F.

F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International 33, 925–933 (1993).
[CrossRef]

de Damborenea, J.

A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
[CrossRef]

de Faria, D. L. A.

D. L. A. de Faria, S. V. Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc. 28, 873–878 (1997).
[CrossRef]

de Oliveira, M. T.

D. L. A. de Faria, S. V. Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc. 28, 873–878 (1997).
[CrossRef]

Delaporte, P.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Fernandes, J.

J. Fernandes and D. M. Kane, “An overview of experimental research into the laser cleaning of contaminants from surfaces,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific, 2006), p. 29.

Grigoropoulos, C. P.

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 721, 127–129 (1998).

Hong, M. H.

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

Huang, W.

Z. Wang, X. Zeng, and W. Huang, “Parameters and surface performance of laser removal of rust layer on A3 steel,” Surf. Coat. Technol. 166, 10–16 (2003).
[CrossRef]

Iordanova, I.

I. Iordanova and V. Antonov, “Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption,” Thin Solid Films 516, 7475–7481 (2008).
[CrossRef]

Kane, D. M.

J. Fernandes and D. M. Kane, “An overview of experimental research into the laser cleaning of contaminants from surfaces,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific, 2006), p. 29.

Koh, Y.

Y. Koh and I. Sárady, “Cleaning of corroded iron artefacts using pulsed TEA CO2 and NdYAG lasers,” J. Cult. Herit. 4, 129–133 (2003).

Kwok, C. T.

C. T. Kwok, H. C. Man, and F. T. Cheng, “Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surf. Coat. Technol. 99, 295–304 (1998).
[CrossRef]

Leborgne, C.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Leung, W. P.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Low, T. S.

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

Lu, Y. F.

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

Man, H. C.

C. T. Kwok, H. C. Man, and F. T. Cheng, “Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surf. Coat. Technol. 99, 295–304 (1998).
[CrossRef]

Margheri, F.

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

Marine, W.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Mascalchi, M.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Masotti, L.

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

Mazzinghi, P.

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

Mencaglia, A. A.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Modi, S.

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

Osticioli, I.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Park, H. K.

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 721, 127–129 (1998).

Pereira, A.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Pini, R.

R. Salimbeni, R. Pini, and S. Siano, “A variable pulse width NdYAG laser for conservation,” J. Cult. Herit. 4, 72–76 (2003).
[CrossRef]

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

Salimbeni, R.

R. Salimbeni, R. Pini, and S. Siano, “A variable pulse width NdYAG laser for conservation,” J. Cult. Herit. 4, 72–76 (2003).
[CrossRef]

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

Sárady, I.

Y. Koh and I. Sárady, “Cleaning of corroded iron artefacts using pulsed TEA CO2 and NdYAG lasers,” J. Cult. Herit. 4, 129–133 (2003).

Sauvage, T.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Schwertmann, U.

R. M. Comell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. (Wiley, 2007), pp. 512–516.

Semmar, N.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Sentis, M.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Shen, J.

F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International 33, 925–933 (1993).
[CrossRef]

Siano, S.

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

R. Salimbeni, R. Pini, and S. Siano, “A variable pulse width NdYAG laser for conservation,” J. Cult. Herit. 4, 72–76 (2003).
[CrossRef]

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

S. Siano, “Principles of laser cleaning in conservation,” in Handbook on the Use of Lasers in Conservation and Conservation Science, M. Schreiner and M. Strlič, eds. (COST office, 2007), p. 26. http://alpha1.infim.ro/cost/pagini/handbook/chapters/prin_cle.htm .

Silva, S. V.

D. L. A. de Faria, S. V. Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc. 28, 873–878 (1997).
[CrossRef]

Song, W. D.

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

Tam, A. C.

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 721, 127–129 (1998).

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Thomann, A. L.

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

Vilar, R.

A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
[CrossRef]

Wang, Z.

Z. Wang, X. Zeng, and W. Huang, “Parameters and surface performance of laser removal of rust layer on A3 steel,” Surf. Coat. Technol. 166, 10–16 (2003).
[CrossRef]

Zapka, W.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Zeng, X.

Z. Wang, X. Zeng, and W. Huang, “Parameters and surface performance of laser removal of rust layer on A3 steel,” Surf. Coat. Technol. 166, 10–16 (2003).
[CrossRef]

Ziemlich, W.

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

Appl. Phys. A (3)

G. Daurelio, G. Chita, and M. Cinquepalmi, “Laser surface cleaning, de-rusting, de-painting and de-oxidizing,” Appl. Phys. A 69, S543–S546 (1999).
[CrossRef]

Y. F. Lu, W. D. Song, M. H. Hong, T. C. Chong, and T. S. Low, “Mechanism of and method to avoid discoloration of stainless steel surfaces in laser cleaning,” Appl. Phys. A 64, 573–578 (1997).
[CrossRef]

S. Siano, J. Agresti, I. Cacciari, D. Ciofini, M. Mascalchi, I. Osticioli, and A. A. Mencaglia, “Laser cleaning in conservation of stone, metal, and painted artifacts state of the art and new insights on the use of the Nd:YAG lasers,” Appl. Phys. A 106, 419–446 (2012).
[CrossRef]

Appl. Surf. Sci. (1)

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 721, 127–129 (1998).

ISIJ International (1)

F. Dausinger and J. Shen, “Energy coupling efficiency in laser surface treatment,” ISIJ International 33, 925–933 (1993).
[CrossRef]

J. Appl. Phys. (1)

A. C. Tam, W. P. Leung, W. Zapka, and W. Ziemlich, “Laser-cleaning techniques for removal of surface particulates,” J. Appl. Phys. 71, 3515–3523 (1992).
[CrossRef]

J. Cult. Herit. (3)

F. Margheri, S. Modi, L. Masotti, P. Mazzinghi, R. Pini, S. Siano, and R. Salimbeni, “SMART CLEAN a new laser system with improved emission characteristics and transmission through long optical fibres,” J. Cult. Herit. 1, S119–S123 (2000).
[CrossRef]

R. Salimbeni, R. Pini, and S. Siano, “A variable pulse width NdYAG laser for conservation,” J. Cult. Herit. 4, 72–76 (2003).
[CrossRef]

Y. Koh and I. Sárady, “Cleaning of corroded iron artefacts using pulsed TEA CO2 and NdYAG lasers,” J. Cult. Herit. 4, 129–133 (2003).

J. Raman Spectrosc. (1)

D. L. A. de Faria, S. V. Silva, and M. T. de Oliveira, “Raman microspectroscopy of some iron oxides and oxyhydroxides,” J. Raman Spectrosc. 28, 873–878 (1997).
[CrossRef]

Mater. Des. (1)

A. Conde, R. Colaço, R. Vilar, and J. de Damborenea, “Corrosion behaviour of steels after laser surface melting,” Mater. Des. 21, 441–445 (2000).
[CrossRef]

Surf. Coat. Technol. (2)

C. T. Kwok, H. C. Man, and F. T. Cheng, “Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surf. Coat. Technol. 99, 295–304 (1998).
[CrossRef]

Z. Wang, X. Zeng, and W. Huang, “Parameters and surface performance of laser removal of rust layer on A3 steel,” Surf. Coat. Technol. 166, 10–16 (2003).
[CrossRef]

Thin Solid Films (2)

A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A. L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, and T. Sauvage, “Laser treatment of a steel surface in ambient air,” Thin Solid Films 453–454, 16–21 (2004).
[CrossRef]

I. Iordanova and V. Antonov, “Surface oxidation of low carbon steel during laser treatment, its dependence on the initial microstructure and influence on the laser energy absorption,” Thin Solid Films 516, 7475–7481 (2008).
[CrossRef]

Other (3)

R. M. Comell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. (Wiley, 2007), pp. 512–516.

S. Siano, “Principles of laser cleaning in conservation,” in Handbook on the Use of Lasers in Conservation and Conservation Science, M. Schreiner and M. Strlič, eds. (COST office, 2007), p. 26. http://alpha1.infim.ro/cost/pagini/handbook/chapters/prin_cle.htm .

J. Fernandes and D. M. Kane, “An overview of experimental research into the laser cleaning of contaminants from surfaces,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific, 2006), p. 29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of laser derusting system.

Fig. 2.
Fig. 2.

Floating rust before laser derusting observed by metalloscope (yellow: oxides; white: carbon steel).

Fig. 3.
Fig. 3.

Laser derusting without surface melting observed by metalloscope.

Fig. 4.
Fig. 4.

Laser derusting with surface melting observed by metalloscope.

Fig. 5.
Fig. 5.

Black layer produced in the discoloration process.

Fig. 6.
Fig. 6.

Yellowish layer produced in the discoloration process.

Fig. 7.
Fig. 7.

Temperature variation of iron when laser fluence is 1.8, 2.7, and 4.0J/cm2.

Tables (1)

Tables Icon

Table 1. Thermal Properties of Iron and Rusta

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2α-FeOOH[orγ-FeOOH]+hvγ-Fe2O3+H2O6γ-Fe2O3+hv4Fe3O4+O2.
Fe3O4200°Cγ-Fe2O3400°Cα-Fe2O3.
2Dτ=23×1010150×1019=13nm.
ρiciTi(r,z,t)t=1rr[rkiTi(r,z,t)r]+z[kiTi(r,z,t)z].
ksTs(r,z,t)z|interface=0.3I(r,t).
I(r,t)=I0f(r)g(t)=I0,r<r0,t<τFWHM.

Metrics