Abstract

The National Institute of Standards and Technology operates two spectral comparator facilities, both of which are used to provide detector calibrations from the ultraviolet to the near-infrared spectral range. One, the Ultraviolet Spectral Comparator Facility (UV SCF), has been in operation for more than two decades, providing one of the core calibration services. Recently, the illumination source used in the UV SCF has been changed from an argon mini-arc source to a laser-driven plasma light source. This new source has higher brightness, a smaller source size, better temporal stability, and much better conversion efficiency than the previous source. The improvements in the capabilities are summarized.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” (NIST, 2008).
  2. T. Larason, S. Bruce, and C. Cromer, “The NIST high accuracy scale for absolute spectral response from 406  nm to 920  nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
    [CrossRef]
  3. C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, J. J. Lee, ed. (SPIE, 1983), Vol. 416, pp. 2–8.
  4. T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between −40°C and +1100°C,” Philos. Trans. Roy. Soc. London A 316, 85–189 (1985).
  5. G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap si radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
    [CrossRef]
  6. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
    [CrossRef]
  7. J. M. Bridges and W. R. Ott, “Vacuum ultraviolet radiometry. 3: the argon mini-arc as a new secondary standard of spectral radiance,” Appl. Opt. 16, 367–376 (1977).
    [CrossRef]
  8. J. L. Lean, H. J. Kostkowski, R. D. Saunders, and L. R. Hughey, “Comparison of the NIST SURF and argon miniarc irradiance standards at 214  nm,” Appl. Opt. 28, 3246–3253 (1989).
    [CrossRef]
  9. S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
    [CrossRef]
  10. J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
    [CrossRef]
  11. G. Eppeldauer and J. E. Hardis, “Fourteen-decade photocurrent measurements with large-area silicon photodiodes at room temperature,” Appl. Opt. 30, 3091–3099 (1991).
    [CrossRef]
  12. G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
    [CrossRef]
  13. E. C. Y. Inn and Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870 (1953).
    [CrossRef]
  14. T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
    [CrossRef]
  15. U. Arp, “Diffraction and depth-of-field effects in electron beam imaging at SURF III,” Nucl. Instrum. Methods Phys. Res. A 462, 568–575 (2001).
    [CrossRef]
  16. U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
    [CrossRef]
  17. P.-S. Shaw, R. Gupta, and K. R. Lykke, “Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation,” Appl. Opt. 41, 7173–7178 (2002).
    [CrossRef]
  18. U. Arp, P.-S. Shaw, R. Gupta, and K. R. Lykke, “Damage to solid-state photodiodes by vacuum ultraviolet radiation,” J. Electron Spectrosc. Relat. Phenom. 144–147, 1039–1042 (2005).
    [CrossRef]
  19. R. Gupta, K. Lykke, P. S. Shaw, and J. L. Dehmer, “Characterization of UV-induced Radiation Damage in Si-based Photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds. (SPIE, 1999), Vol. 3818, pp. 27–33.

2013 (2)

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
[CrossRef]

2011 (1)

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

2010 (1)

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

2006 (1)

2005 (1)

U. Arp, P.-S. Shaw, R. Gupta, and K. R. Lykke, “Damage to solid-state photodiodes by vacuum ultraviolet radiation,” J. Electron Spectrosc. Relat. Phenom. 144–147, 1039–1042 (2005).
[CrossRef]

2003 (1)

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

2002 (1)

2001 (1)

U. Arp, “Diffraction and depth-of-field effects in electron beam imaging at SURF III,” Nucl. Instrum. Methods Phys. Res. A 462, 568–575 (2001).
[CrossRef]

2000 (1)

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap si radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

1996 (1)

T. Larason, S. Bruce, and C. Cromer, “The NIST high accuracy scale for absolute spectral response from 406  nm to 920  nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

1991 (1)

1989 (1)

1985 (1)

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between −40°C and +1100°C,” Philos. Trans. Roy. Soc. London A 316, 85–189 (1985).

1977 (1)

1953 (1)

Arp, U.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

U. Arp, P.-S. Shaw, R. Gupta, and K. R. Lykke, “Damage to solid-state photodiodes by vacuum ultraviolet radiation,” J. Electron Spectrosc. Relat. Phenom. 144–147, 1039–1042 (2005).
[CrossRef]

U. Arp, “Diffraction and depth-of-field effects in electron beam imaging at SURF III,” Nucl. Instrum. Methods Phys. Res. A 462, 568–575 (2001).
[CrossRef]

Besen, M.

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Bridges, J. M.

Brown, S. W.

Bruce, S.

T. Larason, S. Bruce, and C. Cromer, “The NIST high accuracy scale for absolute spectral response from 406  nm to 920  nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

Chen, X.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Cheung, A. S.-C.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Cromer, C.

T. Larason, S. Bruce, and C. Cromer, “The NIST high accuracy scale for absolute spectral response from 406  nm to 920  nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

Dehmer, J. L.

R. Gupta, K. Lykke, P. S. Shaw, and J. L. Dehmer, “Characterization of UV-induced Radiation Damage in Si-based Photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds. (SPIE, 1999), Vol. 3818, pp. 27–33.

Eppeldauer, G.

Eppeldauer, G. P.

G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
[CrossRef]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
[CrossRef]

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap si radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

Feng, J.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Gupta, R.

U. Arp, P.-S. Shaw, R. Gupta, and K. R. Lykke, “Damage to solid-state photodiodes by vacuum ultraviolet radiation,” J. Electron Spectrosc. Relat. Phenom. 144–147, 1039–1042 (2005).
[CrossRef]

P.-S. Shaw, R. Gupta, and K. R. Lykke, “Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation,” Appl. Opt. 41, 7173–7178 (2002).
[CrossRef]

R. Gupta, K. Lykke, P. S. Shaw, and J. L. Dehmer, “Characterization of UV-induced Radiation Damage in Si-based Photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds. (SPIE, 1999), Vol. 3818, pp. 27–33.

Hardis, J. E.

Hidalgo, S. E.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Holber, W.

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Horne, S.

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Houston, J. M.

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” (NIST, 2008).

Hughey, L. R.

Imajo, T.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Inn, E. C. Y.

Ito, K.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Jarrett, D. G.

G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
[CrossRef]

Javier Palomares, F.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Klein, R.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

Kostkowski, H. J.

Larason, T.

T. Larason, S. Bruce, and C. Cromer, “The NIST high accuracy scale for absolute spectral response from 406  nm to 920  nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

Larason, T. C.

G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
[CrossRef]

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” (NIST, 2008).

Lean, J. L.

Leung, K. W.-S.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Li, Z.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

Lykke, K.

R. Gupta, K. Lykke, P. S. Shaw, and J. L. Dehmer, “Characterization of UV-induced Radiation Damage in Si-based Photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds. (SPIE, 1999), Vol. 3818, pp. 27–33.

Lykke, K. R.

Lynch, D. C.

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap si radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

Martin, J. E.

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between −40°C and +1100°C,” Philos. Trans. Roy. Soc. London A 316, 85–189 (1985).

Matsui, T.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Murray, J. E.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Nasiatka, J.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Ott, W. R.

Padmore, H. A.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Parkinson, W. H.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Partlow, M.

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Paustian, W.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

Quinn, T. J.

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between −40°C and +1100°C,” Philos. Trans. Roy. Soc. London A 316, 85–189 (1985).

Richter, M.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

Saunders, R. D.

Shaw, P. S.

R. Gupta, K. Lykke, P. S. Shaw, and J. L. Dehmer, “Characterization of UV-induced Radiation Damage in Si-based Photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds. (SPIE, 1999), Vol. 3818, pp. 27–33.

Shaw, P.-S.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

U. Arp, P.-S. Shaw, R. Gupta, and K. R. Lykke, “Damage to solid-state photodiodes by vacuum ultraviolet radiation,” J. Electron Spectrosc. Relat. Phenom. 144–147, 1039–1042 (2005).
[CrossRef]

P.-S. Shaw, R. Gupta, and K. R. Lykke, “Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation,” Appl. Opt. 41, 7173–7178 (2002).
[CrossRef]

Smith, D.

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Stolyarov, D.

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Tanaka, Y.

Thornagel, R.

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

Thorne, A. P.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Vecchione, T.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Wong, J.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Yokley, C. R.

C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, J. J. Lee, ed. (SPIE, 1983), Vol. 416, pp. 2–8.

Yoon, H. W.

G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
[CrossRef]

Yoshino, K.

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

Zhu, H.

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Appl. Opt. (5)

J. Electron Spectrosc. Relat. Phenom. (1)

U. Arp, P.-S. Shaw, R. Gupta, and K. R. Lykke, “Damage to solid-state photodiodes by vacuum ultraviolet radiation,” J. Electron Spectrosc. Relat. Phenom. 144–147, 1039–1042 (2005).
[CrossRef]

J. Mol. Spectrosc. (1)

T. Matsui, A. S.-C. Cheung, K. W.-S. Leung, K. Yoshino, W. H. Parkinson, A. P. Thorne, J. E. Murray, K. Ito, and T. Imajo, “High resolution absorption cross-section measurements of the Schumann–Runge bands of O2 by VUV Fourier transform spectroscopy,” J. Mol. Spectrosc. 219, 45–57 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Res. Natl. Inst. Stand. Technol. (2)

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap si radiometer,” J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000).
[CrossRef]

T. Larason, S. Bruce, and C. Cromer, “The NIST high accuracy scale for absolute spectral response from 406  nm to 920  nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996).
[CrossRef]

Metrologia (2)

G. P. Eppeldauer, H. W. Yoon, D. G. Jarrett, and T. C. Larason, “Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements,” Metrologia 50, 509–517 (2013).
[CrossRef]

U. Arp, R. Klein, Z. Li, W. Paustian, M. Richter, P.-S. Shaw, and R. Thornagel, “Synchrotron radiation-based bilateral intercomparison of ultraviolet source calibrations,” Metrologia 48, 261–267 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

U. Arp, “Diffraction and depth-of-field effects in electron beam imaging at SURF III,” Nucl. Instrum. Methods Phys. Res. A 462, 568–575 (2001).
[CrossRef]

Philos. Trans. Roy. Soc. London A (1)

T. J. Quinn and J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between −40°C and +1100°C,” Philos. Trans. Roy. Soc. London A 316, 85–189 (1985).

Proc. SPIE (1)

S. Horne, D. Smith, M. Besen, M. Partlow, D. Stolyarov, H. Zhu, and W. Holber, “A novel high-brightness broadband light-source technology from the VUV to the IR,” Proc. SPIE 7680, 76800L (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Feng, J. Nasiatka, J. Wong, X. Chen, S. E. Hidalgo, T. Vecchione, H. Zhu, F. Javier Palomares, and H. A. Padmore, “A stigmatic ultraviolet-visible monochromator for use with a high brightness laser driven plasma light source,” Rev. Sci. Instrum. 84, 085114 (2013).
[CrossRef]

Other (3)

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” (NIST, 2008).

C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, J. J. Lee, ed. (SPIE, 1983), Vol. 416, pp. 2–8.

R. Gupta, K. Lykke, P. S. Shaw, and J. L. Dehmer, “Characterization of UV-induced Radiation Damage in Si-based Photodiodes,” in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation II, G. R. Carruthers and K. F. Dymond, eds. (SPIE, 1999), Vol. 3818, pp. 27–33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic layout of the UV SCF. The light generated in the laser-driven light source (LDLS) is imaged onto the entrance slit of the double monochromator using transfer optics. The exit slit of the monochromator is imaged onto the detector under test (P0) or one of two working standard detectors 1 (P1) and 2 (P2), using the spherical mirror M1 and flat mirror M2. Source fluctuations are monitored with a beamsplitter (BS) and monitor detector (MD). The shutter allows measurement of the background signal of the data acquisition system.

Fig. 2.
Fig. 2.

(Top) Comparison of the optical power at the detector position of the UV SCF: laser-driven light source (LDLS) PLDLS ▪, argon mini-arc source (AMAS) PAMAS +. The ratio PLDLS/PAMAS is indicated by the open circles ○. (Bottom) Relative standard deviation σSignal/Signal of the detector signal averaged over about 2 min for the LDLS ▪ and AMAS +. Decreased stability caused by ozone generation is clearly visible around 250 nm.

Fig. 3.
Fig. 3.

(Top) Relative standard deviation of 10 samples of the detector signal divided by the monitor signal for the UV SCF in percent: LDLS ▪, AMAS +. (Bottom) Difference in results for two measurements of the same detector showing improved repeatability: LDLS ▪, AMAS +.

Fig. 4.
Fig. 4.

Schematic layout of the transfer optic, which images the LDLS onto the charged-coupled device camera (CCD), using two off-axis parabolic mirrors. M1 collimates the light, and M2 refocuses the beam onto the CCD. M2 has a four times longer effective focal length than M1, resulting in a four times magnified image and four times reduced divergence of the beam. The neutral density filter (ND) and interference filter (IF) are placed in the beam to reduce the intensity.

Fig. 5.
Fig. 5.

Image of the LDLS at λ0=350 in the focus of the transfer optics, which consists of two off-axis parabolic mirrors. The FWHM is (314.8±2.6)μm horizontally and (602.0±9.1)μm vertically.

Fig. 6.
Fig. 6.

Image of the UV SCF beam in the detector plane at λ=400nm. The FWHM is (1617.6±60.0)μm horizontally and (720.6±3.9)μm vertically.

Metrics