Abstract

Microlens-ended fibers could find great usefulness in future biomedical applications, particularly in endoscopic imaging applications. In this context, this paper focuses on microlens-attached specialty optical fibers such as imaging fiber that can be used for probe imaging applications. Stand-alone self-aligned polymer microlenses have been fabricated by microcompression molding. The fabrication parameters have been optimized for different materials, such as poly(methyl methacrylate) (PMMA), polycarbonate (PC Lexan 123R), Zeonor 1060R (ZNR), and Topas COC. A comparison study of the focusing and spatial resolution of the fabricated lenses is performed prior to employing them for fiber-optic fluorescence imaging applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Reed, M. F. Yan, and M. J. Schnitzer, “Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry,” Opt. Lett. 27, 1794–1796 (2002).
    [CrossRef]
  2. Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46, 5887–5894 (2007).
    [CrossRef]
  3. R. A. McLaughlin and D. D. Sampson, “Clinical applications of fiber-optic probes in optical coherence tomography,” Opt. Fiber Technol. 16, 467–475 (2010).
    [CrossRef]
  4. V. M. Murukeshan and N. Sujatha, “All fiber based multispeckle modality endoscopic system for imaging medical cavities,” Rev. Sci. Instrum. 78, 053106 (2007).
    [CrossRef]
  5. M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
    [CrossRef]
  6. S.-S. Lee, L.-S. Huang, C.-J. Kim, and M. C. Wu, “Free-space fiber-optic switches based on MEMS vertical torsion mirrors,” J. Lightwave Technol. 17, 7–13 (1999).
    [CrossRef]
  7. M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
    [CrossRef]
  8. L. G. Cohen and M. V. Schneider, “Microlenses for coupling junction lasers to optical fibers,” Appl. Opt. 13, 89–94 (1974).
    [CrossRef]
  9. V. Russo, G. C. Righini, S. Sottini, and S. Trigari, “Lens-ended fibers for medical applications: a new fabrication technique,” Appl. Opt. 23, 3277–3283 (1984).
    [CrossRef]
  10. N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
    [CrossRef]
  11. K. Bescherer, D. Munzke, O. Reich, and H.-P. Loock, “Fabrication and modeling of multimode fiber lenses,” Appl. Opt. 52, B40–B45 (2013).
    [CrossRef]
  12. M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
    [CrossRef]
  13. M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
    [CrossRef]
  14. M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
    [CrossRef]
  15. R. K. Roy, A Primer on the Taguchi Method (Society of Manufacturing Engineers, 2010).
  16. E. Hecht and A. Zajac, Optics, Addison-Wesley Series in Physics (Addison-Wesley, 1974).

2013 (1)

2012 (1)

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

2011 (2)

N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
[CrossRef]

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

2010 (2)

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

R. A. McLaughlin and D. D. Sampson, “Clinical applications of fiber-optic probes in optical coherence tomography,” Opt. Fiber Technol. 16, 467–475 (2010).
[CrossRef]

2009 (1)

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

2007 (2)

V. M. Murukeshan and N. Sujatha, “All fiber based multispeckle modality endoscopic system for imaging medical cavities,” Rev. Sci. Instrum. 78, 053106 (2007).
[CrossRef]

Y. Mao, S. Chang, S. Sherif, and C. Flueraru, “Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging,” Appl. Opt. 46, 5887–5894 (2007).
[CrossRef]

2002 (1)

1999 (1)

1998 (1)

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

1984 (1)

1974 (1)

Beng Tor, S.

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

Bescherer, K.

Bhakoo, K.

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

Chang, S.

Cohen, L. G.

Demagh, N.-E.

N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
[CrossRef]

Flueraru, C.

Gharbi, T.

N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
[CrossRef]

Guessoum, A.

N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
[CrossRef]

Hecht, E.

E. Hecht and A. Zajac, Optics, Addison-Wesley Series in Physics (Addison-Wesley, 1974).

Huang, L.-S.

Joseph, J.

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

Kiang, M.-H.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Kim, C.-J.

Krishnan, M. V.

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

Krishnan, S.

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

Lau, K. Y.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Lee, S.-S.

Loh, N. H.

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

Loock, H.-P.

Lye, S. W.

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

Mao, Y.

Matham, M. V.

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

McLaughlin, R. A.

R. A. McLaughlin and D. D. Sampson, “Clinical applications of fiber-optic probes in optical coherence tomography,” Opt. Fiber Technol. 16, 467–475 (2010).
[CrossRef]

Mirkhalaf, M.

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

Muller, R. S.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Munzke, D.

Murukeshan, V. M.

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

V. M. Murukeshan and N. Sujatha, “All fiber based multispeckle modality endoscopic system for imaging medical cavities,” Rev. Sci. Instrum. 78, 053106 (2007).
[CrossRef]

Parasuraman, P.

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

Reed, W. A.

Reich, O.

Righini, G. C.

Roy, R. K.

R. K. Roy, A Primer on the Taguchi Method (Society of Manufacturing Engineers, 2010).

Russo, V.

Sampson, D. D.

R. A. McLaughlin and D. D. Sampson, “Clinical applications of fiber-optic probes in optical coherence tomography,” Opt. Fiber Technol. 16, 467–475 (2010).
[CrossRef]

Sathiyamoorthy, K.

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

Schneider, M. V.

Schnitzer, M. J.

Sherif, S.

Shinoj, V. K.

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

Solgaard, O.

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

Sottini, S.

Sujatha, N.

V. M. Murukeshan and N. Sujatha, “All fiber based multispeckle modality endoscopic system for imaging medical cavities,” Rev. Sci. Instrum. 78, 053106 (2007).
[CrossRef]

Tor, S. B.

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

Trigari, S.

Wu, M. C.

Yan, M. F.

Zajac, A.

E. Hecht and A. Zajac, Optics, Addison-Wesley Series in Physics (Addison-Wesley, 1974).

Zegari, R.

N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
[CrossRef]

Appl. Opt. (4)

J. Biomed. Opt. (1)

M. V. Krishnan, M. V. Matham, S. Krishnan, P. Parasuraman, J. Joseph, and K. Bhakoo, “Red, green, and blue gray-value shift-based approach to whole-field imaging for tissue diagnostics,” J. Biomed. Opt. 17, 0760101 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

M.-H. Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7, 27–37 (1998).
[CrossRef]

J. Micromech. Microeng. (1)

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Fabrication of a stand-alone polymer microlens: design of molding apparatus, simulation and experimental results,” J. Micromech. Microeng. 19, 095005 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

N.-E. Demagh, A. Guessoum, R. Zegari, and T. Gharbi, “Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre,” Meas. Sci. Technol. 22, 115302 (2011).
[CrossRef]

Opt. Fiber Technol. (1)

R. A. McLaughlin and D. D. Sampson, “Clinical applications of fiber-optic probes in optical coherence tomography,” Opt. Fiber Technol. 16, 467–475 (2010).
[CrossRef]

Opt. Lett. (1)

Polym. Eng. Sci. (1)

M. Mirkhalaf, S. B. Tor, V. M. Murukeshan, N. H. Loh, and S. W. Lye, “Optimization of compression molding of stand-alone microlenses: simulation and experimental results,” Polym. Eng. Sci. 50, 2216–2228 (2010).
[CrossRef]

Rev. Sci. Instrum. (2)

V. M. Murukeshan and N. Sujatha, “All fiber based multispeckle modality endoscopic system for imaging medical cavities,” Rev. Sci. Instrum. 78, 053106 (2007).
[CrossRef]

M. Mirkhalaf, V. M. Murukeshan, S. Beng Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
[CrossRef]

Other (2)

R. K. Roy, A Primer on the Taguchi Method (Society of Manufacturing Engineers, 2010).

E. Hecht and A. Zajac, Optics, Addison-Wesley Series in Physics (Addison-Wesley, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Confocal image, surface profile, and SEM image of microlens made of (a) PMMA, (b) PC, (c) Zeonor, and (d) Topas.

Fig. 2.
Fig. 2.

Ray diagram for focal length measurement of microlens.

Fig. 3.
Fig. 3.

Ray tracing simulation by TracePro. (a) PMMA, f=2.21mm; (b) Topas, f=2.203mm; (c) Zeonor, f=2.13mm; and (d) PC, f=1.87mm.

Fig. 4.
Fig. 4.

Optical setup used for the focal length measurement of microlenses.

Fig. 5.
Fig. 5.

CCD images and corresponding surface profiles at (a), (b) focal point and (c), (d) lens surface.

Fig. 6.
Fig. 6.

(a) Photograph of fabricated stand-alone microlenses and microlens-tipped image fiber. (b), (c) SEM images of image fiber at different magnifications.

Fig. 7.
Fig. 7.

(a) Photograph of experimental setup for evaluation of the resolution of microlens-attached image fiber. (b) Obtained maximum resolution for microlens made of different materials.

Fig. 8.
Fig. 8.

Photograph of the experimental setup that simulates an endoscope.

Fig. 9.
Fig. 9.

(a), (b) Images of test sample taken with microlens-tipped image fiber probe system from different parts of the sample.

Tables (1)

Tables Icon

Table 1. List of Optimized Parameters Obtained from Our Lens Fabrication Procedures for Different Polymers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f=Rn1,

Metrics