Abstract

Dyes often act as the photoinitiator PI/photosensitizer PS in photopolymer materials and are therefore of significant interest. The properties of the PI/PS used strongly influences grating formation when the material layer is exposed holographically. In this paper, the ability of a recently synthesized dye, D_1, to sensitize an acrylamide/polyvinyl alcohol (AA/PVA) based photopolymer is examined, and the material performance is characterized using an extended nonlocal photopolymerization-driven diffusion model. Electron spin resonance spin-trapping (ESR-ST) experiments are also carried out to characterize the generation of the initiator/primary radical, R, during exposure. The results obtained are then compared with those for the corresponding situation when using a xanthene dye, i.e., erythrosine B, under the same experiment conditions. The results indicate that the nonlocal effect is greater when this new photosensitizer is used in the material. Analysis indicates that this is the case because of the dye’s (D_1) weak absorptivity and the resulting slow rate of primary radical production.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  2. J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).
  3. N. Capolla and R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1988).
    [CrossRef]
  4. J. J. A. Couture and R. A. Lessard, “Modulation transfer function measurements for thin layers of azo dyes in PVA matrix used as an optical recording material,” Appl. Opt. 27, 3368–3374 (1988).
    [CrossRef]
  5. Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013).
    [CrossRef]
  6. Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B 30, 3308–3315 (2013).
    [CrossRef]
  7. M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
    [CrossRef]
  8. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
    [CrossRef]
  9. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [CrossRef]
  10. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
    [CrossRef]
  11. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
    [CrossRef]
  12. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
    [CrossRef]
  13. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008).
    [CrossRef]
  14. S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453, (2000).
    [CrossRef]
  15. K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
    [CrossRef]
  16. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870, (2010).
    [CrossRef]
  17. E. Tolstik, O. Kashin, V. Matusevich, and R. Kowarschik, “Broadening of the light self-trapping due to thermal defocusing in PQ-PMMA polymeric layers,” Opt. Express 19, 2739–2747, (2011).
    [CrossRef]
  18. Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
    [CrossRef]
  19. Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).
  20. M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
    [CrossRef]
  21. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
    [CrossRef]
  22. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
    [CrossRef]
  23. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
    [CrossRef]
  24. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
    [CrossRef]
  25. H. K. Mahabadi, “Effects of chain-length dependence of termination rate-constant on the kinetics of free-radical polymerization. Part 1. Evaluation of an analytical expression relating the apparent rate-constant of termination to the number-average degree of polymerization,” Macromolecules 18, 1319–1324 (1985).
    [CrossRef]
  26. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282–290 (1994).
  27. G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).
  28. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
    [CrossRef]
  29. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
    [CrossRef]
  30. P. Tordo, Spin-Trapping: Recent Developments and Applications (The Royal Society of Chemistry, 1998).
  31. J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
    [CrossRef]
  32. D. R. Duling, “Simulation of multiple isotropic spin trap EPR spectra,” J. Magn. Reson., Ser. B 104, 105–110 (1994).
    [CrossRef]
  33. L. Bornstein, Magnetic Properties of Free Radicals, H. Fischer, ed. (Springer-Verlag, 2005), Vol. 26d.
  34. A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
    [CrossRef]
  35. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  36. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
    [CrossRef]
  37. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  38. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  39. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
    [CrossRef]

2013 (3)

2012 (1)

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

2011 (2)

2010 (5)

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
[CrossRef]

J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt. 49, 858–870, (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

2009 (3)

2008 (2)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

2007 (1)

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

2006 (4)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

2003 (1)

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
[CrossRef]

2001 (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

2000 (2)

1999 (1)

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

1994 (2)

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282–290 (1994).

D. R. Duling, “Simulation of multiple isotropic spin trap EPR spectra,” J. Magn. Reson., Ser. B 104, 105–110 (1994).
[CrossRef]

1993 (1)

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

1988 (2)

1985 (1)

H. K. Mahabadi, “Effects of chain-length dependence of termination rate-constant on the kinetics of free-radical polymerization. Part 1. Evaluation of an analytical expression relating the apparent rate-constant of termination to the number-average degree of polymerization,” Macromolecules 18, 1319–1324 (1985).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Amat-Guerri, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Berneth, H.

Blanchard, N.

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

Bornstein, L.

L. Bornstein, Magnetic Properties of Free Radicals, H. Fischer, ed. (Springer-Verlag, 2005), Vol. 26d.

Bowman, C. N.

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

Bruder, F. K.

Capolla, N.

Castro, J. M.

Chen, W.

Close, C. E.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Couture, J. J. A.

Curtis, K.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Dhar, L.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Duling, D. R.

D. R. Duling, “Simulation of multiple isotropic spin trap EPR spectra,” J. Magn. Reson., Ser. B 104, 105–110 (1994).
[CrossRef]

Dumur, F.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

Fäcke, T.

Fimia, A.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Fouassier, J. P.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).

Gallego, S.

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Gigmes, D.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

Gleeson, M. R.

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B 30, 3308–3315 (2013).
[CrossRef]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).

Goodner, M. D.

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

Graff, B.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

Guo, J.

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B 30, 3308–3315 (2013).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013).
[CrossRef]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).

Hill, A.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Hsiao, Y.

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453, (2000).
[CrossRef]

Kashin, O.

Kelly, J. V.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kostuk, R. K.

Kowarschik, R.

Lalevee, J.

J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).

Lalevée, J.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Lessard, R. A.

Li, H.

Lin, S. H.

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453, (2000).
[CrossRef]

Liu, S.

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Lopez, N.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Mahabadi, H. K.

H. K. Mahabadi, “Effects of chain-length dependence of termination rate-constant on the kinetics of free-radical polymerization. Part 1. Evaluation of an analytical expression relating the apparent rate-constant of termination to the number-average degree of polymerization,” Macromolecules 18, 1319–1324 (1985).
[CrossRef]

Mahilny, U. V.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
[CrossRef]

Manivannan, G.

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282–290 (1994).

Marmysh, D. N.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
[CrossRef]

Mateos, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Matusevich, V.

McLeod, R. R.

Morlet-Savary, F.

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

Murphy, L.

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Myer, B.

Neipp, C.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

O’Brien, A. K.

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O’Neill, F. T.

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).

Pineda, J.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Qi, Y.

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013).
[CrossRef]

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B 30, 3308–3315 (2013).
[CrossRef]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).

Rölle, T.

Sabol, D.

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Sastre, R.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

Sheridan, J. T.

Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 2: experimental results,” J. Opt. Soc. Am. B 30, 3308–3315 (2013).
[CrossRef]

Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of the PQ/PMMA photopolymer. Part 1: theoretical modeling,” J. Opt. Soc. Am. B 30, 3298–3307 (2013).
[CrossRef]

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

M. R. Gleeson, J. T. Sheridan, F. K. Bruder, T. Rölle, H. Berneth, M. S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19, 26325–26342 (2011).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).

Stankevich, A. I.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
[CrossRef]

Tehfe, M.

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

Tehfe, M. A.

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008).
[CrossRef]

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
[CrossRef]

Tolstik, E.

Tordo, P.

P. Tordo, Spin-Trapping: Recent Developments and Applications (The Royal Society of Chemistry, 1998).

Weiser, M. S.

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451–453, (2000).
[CrossRef]

Zhang, D.

Appl. Opt. (3)

Appl. Phys. B (2)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299–302, (2006).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Appl. Phys. (5)

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modeling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113, (2010).
[CrossRef]

J. Magn. Reson., Ser. B (1)

D. R. Duling, “Simulation of multiple isotropic spin trap EPR spectra,” J. Magn. Reson., Ser. B 104, 105–110 (1994).
[CrossRef]

J. Mod. Opt. (1)

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amat-Guerri, “Elimination of oxygen inhibition in photopolymer systems used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993).
[CrossRef]

J. Opt. A (1)

U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A 10, 085302, (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

Macromol. Theory Simul. (1)

A. K. O’Brien and C. N. Bowman, “Modeling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176–182 (2006).
[CrossRef]

Macromolecules (4)

J. Lalevée, N. Blanchard, M. Tehfe, F. Morlet-Savary, and J. P. Fouassier, “Green bulb light source induced epoxy cationic polymerization under air using tris(2,2′-bipyridine)ruthenium(II) and silyl radicals,” Macromolecules 43, 10191–10195 (2010).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999).
[CrossRef]

H. K. Mahabadi, “Effects of chain-length dependence of termination rate-constant on the kinetics of free-radical polymerization. Part 1. Evaluation of an analytical expression relating the apparent rate-constant of termination to the number-average degree of polymerization,” Macromolecules 18, 1319–1324 (1985).
[CrossRef]

M. A. Tehfe, F. Dumur, B. Graff, D. Gigmes, J. P. Fouassier, and J. Lalevée, “Blue-to red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions,” Macromolecules 46, 3332–3341 (2013).
[CrossRef]

Opt. Eng. (1)

K. Y. Hsu, S. H. Lin, Y. Hsiao, and W. T. Whang, “Experimental characterization of phenanthreneauinone-doped poly(methylmethacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396, (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Optik (1)

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449–463 (2001).
[CrossRef]

Phys. Res. Int. (1)

Y. Qi, M. R. Gleeson, J. Guo, S. Gallego, and J. T. Sheridan, “Quantitative comparison of five different photosensitizers for use in a photopolymer,” Phys. Res. Int. 2012, 975948 (2012).
[CrossRef]

Trends Polym. Sci. (1)

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends Polym. Sci. 2, 282–290 (1994).

Other (6)

G. Odian, Principles of Polymerization, 4th ed. (Wiley, 1991).

L. Bornstein, Magnetic Properties of Free Radicals, H. Fischer, ed. (Springer-Verlag, 2005), Vol. 26d.

P. Tordo, Spin-Trapping: Recent Developments and Applications (The Royal Society of Chemistry, 1998).

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. (to be published).

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

J. P. Fouassier and J. Lalevee, Photoinitiators for Polymer Synthesis (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Principle of the ESR-ST experiments. (a) The reactive radical (aminoalkyl) reacts with the spin trap to give (b) the spin adduct.

Fig. 2.
Fig. 2.

ESR-ST spectrum recorded upon irradiation of a D_1/triethanolamine solution in tert-butylbenzene (irradiation diode laser 532 nm; under N2); (a) before and (b) after irradiation.

Fig. 3.
Fig. 3.

ESR-ST spectrum recorded upon irradiation of an EB/triethanolamine solution in tert-butylbenzene (irradiation diode laser 532 nm; under N2); (a) before and (b) after irradiation.

Fig. 4.
Fig. 4.

Structures of the two photosensitizers studied in this paper: (a) EB (879.87g/mol) and (b) D_1, (277.00g/mol) [18,20].

Fig. 5.
Fig. 5.

Transmittance spectrum for (a) EB (red-dotted curve) and (b) D_1 (green solid curve) in AA/PVA photopolymer material. The concentration of photosensitizer used in both cases is 1.22×106mol/cm3 in a dry material layer containing triethanolamine.

Fig. 6.
Fig. 6.

Setup for the transmission experiments.

Fig. 7.
Fig. 7.

Normalized transmission characteristics of (a) EB and inset (b) D_1 in AA/PVA photopolymer material with the presence of amine. The concentration of photosensitizer used in both cases is 1.22×106mol/cm3. Both the experimental data points (circles and triangles) and theoretical fits (solid lines) for exposure intensities of 10mW/cm2 are shown.

Fig. 8.
Fig. 8.

Setup for holographic exposure experiments.

Fig. 9.
Fig. 9.

Refractive index modulation for the material layer containing (a) EB and inset (b) D_1, for I0=20mW/cm2 and λ=532nm. In both cases, the experimental data points (circles and triangles) and theoretical fits (solid lines) for a spatial frequency of 1428lines/mm are shown.

Tables (4)

Tables Icon

Table 1. Estimated Photosensitive Parametersa

Tables Icon

Table 2. Values of Dye Absorption-Related Parametersa

Tables Icon

Table 3. Mean Refractive Indices for all Component Materials at the Probe Beam Wavelength and Initial Volume Fractions of Each Component before Exposurea

Tables Icon

Table 4. Spatial Frequency Parameter Estimations of EB and D_1 for 1428Lines/mm

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

D+hυkaSD*1,
D+hυkaTD*3,
D*1kr1D,
D*3kr2D,
D3*+EDkdR+H++DR+HD,
D1_1*+EDkdR+HD,
ED+HDkbH2D+EDint,
R+MkiM1.
R+STRST.
Mn+MkpMn+1.
Mn+MmktcMn+m,
Mn+MmktdMn+Mm,
Mn+RktpMnR,
R+Zkz,R(RZ,and/orR+Z),
D*3+Zkz,Dye*leucodye+Z*,
Mn+Zkz,M(MnZ,and/orMn+Z),
d[D(x,t)]dt=ddx{DD(x,t)d[D(x,t)]dx}+kr1[D*1(x,t)]+kr2[D*3(x,t)]kaS[D(x,t)]kaT[D(x,t)],
d[D*1(x,t)]dt=ddx{DD*1(x,t)d[D*1(x,t)]dx}+kaS[D(x,t)]kr1[D*1(x,t)],
d[D*3(x,t)]dt=ddx{DD*3(x,t)d[D*3(x,t)]dx}+kaT[D(x,t)]kr2[D*3(x,t)]kd[D*3(x,t)][ED(x,t)]kz,Dye*[D*3(x,t)][Z(x,t)],
d[ED(x,t)]dt=kd[D*3(x,t)][ED(x,t)]kb[ED(x,t)][HD(x,t)],
d[R(x,t)]dt=kd[3D*(x,t)][ED(x,t)]ki[R(x,t)][u(x,t)]ktp[M(x,t)][R(x,t)]kz,R[R(x,t)][Z(x,t)],
d[HD(x,t)]dt=kd[D*3(x,t)][ED(x,t)]kb[ED(x,t)][HD(x,t)].
d[D1_1*(x,t)]dt=ddx{DD*1(x,t)d[D1_1*(x,t)]dx}+kaS[D_1(x,t)]kr1[D1_1*(x,t)]kd[D1_1*(x,t)][ED(x,t)],
d[D3_1*(x,t)]dt=ddx{DD*3(x,t)d[D3_1*(x,t)]dx}+kaT[D_1(x,t)]kr2[D3_1*(x,t)]kz,Dye*[D3_1*(x,t)][Z(x,t)],
d[ED(x,t)]dt=kd[D1_1*(x,t)][ED(x,t)]kb[ED(x,t)][HD(x,t)],
d[R(x,t)]dt=kd[D1_1*(x,t)][ED(x,t)]ki[R(x,t)][u(x,t)]ktp[M(x,t)][R(x,t)]kz,R[R(x,t)][Z(x,t)],
d[HD(x,t)]dt=kd[D1_1*(x,t)][ED(x,t)]kb[ED(x,t)][HD(x,t)],
d[u(x,t)]dt=ddx[Dm(x,t)d[u(x,t)]dx]ki[R(x,t)][u(x,t)]kp[M(x,t)][u(x,t)]G(x,x)dx.
d[N(x,t)]dt=kp[M(x,t)][u(x,t)]G(x,x)dxddx[DN(x,t)d[N(x,t)]dx],
d[M(x,t)]dt=ki[R(x,t)][u(x,t)]kt[M(x,t)]2ktp[M(x,t)][R(x,t)]kZ,M[M(x,t)][Z(x,t)],
d[Z(x,t)]dt=ddx[DZd[Z(x.t)]dx]kZ,Dye*[D*3(x,t)][Z(x,t)]kZ,R[R(x,t)][Z(x,t)]kZ,M[M(x,t)][Z(x,t)].
G(x,x)=12πσexp[(xx)22σ],
[X(x,t)]=i=0mXi(t)cos(iKx),
T(t)=Tsfexp[ε[A(t)]d],
T0=Tsfexp[ε[A0]d],
I(x,t)=I0[1+Vcos(Kx)],
η(t)Id(t)Id(t)+It(t).
η(t)=sin2[πdn1(t)λpcosθin],
n21n2+2=φ(m)(t)nm21nm2+2+φ(p)(t)np21np2+2+φ(b)(t)nb21nb2+2,
φ(m)(t)+φ(p)(t)+φ(b)(t)=1.
n1(t)=(ndark2+2)26ndark[φ1(m)(t)(nm21nm2+2nb21nb2+2)+φ1(p)(t)(np21np2+2nb21nb2+2)],

Metrics