Abstract

A fiber in-line, multimode coupling interferometer with a trench-embedding, fiber taper probe is proposed and fabricated by femtosecond-laser-induced water breakdown. The reflection-type taper probe is used for gas refractive index (RI) detection from 1.0001143 to 1.0002187 and temperature sensing from 50°C to 500°C. The largest RI sensitivity of the taper probe embedded with a trench at a width of 18.4 μm is 669.502nm/RIU for hybrid nitrogen and helium. Temperature sensitivity is 9.97pm/°C and it shows good linearity through the whole testing range. The new-type multimode interferometer is appropriate for high-accuracy gas RI detection of micrometer-scale spaces and wide-range temperature compensation can be realized.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
    [CrossRef]
  2. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
    [CrossRef]
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  4. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
    [CrossRef]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  6. T. Loppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Otugen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
    [CrossRef]
  7. B. Dong, D. P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
    [CrossRef]
  8. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
    [CrossRef]
  9. X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
    [CrossRef]
  10. R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
    [CrossRef]
  11. A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
    [CrossRef]
  12. S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).
  13. R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
    [CrossRef]
  14. L. Jiang, L. Zhao, S. Wang, J. Yang, and H. Xiao, “Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment,” Opt. Express 19, 17591–17598 (2011).
    [CrossRef]
  15. Y. Liu, S. L. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38, 335–337 (2013).
    [CrossRef]
  16. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536–538 (2008).
    [CrossRef]
  17. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
    [CrossRef]
  18. B. Dong, L. Wei, and D. P. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48, 6466–6469 (2009).
    [CrossRef]

2013

X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
[CrossRef]

R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
[CrossRef]

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Y. Liu, S. L. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38, 335–337 (2013).
[CrossRef]

2011

2010

2009

2008

2006

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
[CrossRef]

2005

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

2003

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

2002

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

Abdel-Moniem, N. M.

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

Abo-Ghazala, M. S.

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

Allsop, T.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Ammar, A. H.

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

Bennion, I.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Bevenot, X.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

Chung, Y.

Clement, M.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

Dam, B.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Dhanuskodi, S.

R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
[CrossRef]

Ding, J. F.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Dong, B.

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Farag, A. A. M.

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

Farag, E. M.

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

Gagnaire, H.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

Gheorghe, D. G.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Han, Y. K.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

He, S. L.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Hwang, D.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Jiang, L.

Kim, T.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Kim, Y.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Kozhevnikov, M.

Kulkarni, A.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Leclercq, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Lee, H.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Li, Y.

Liao, B.

X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
[CrossRef]

Liu, Y.

Loppolo, T.

Mak, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Mohandoss, R.

R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
[CrossRef]

Mooij, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Moon, D. S.

Moon, S.

Neal, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Nguyen, L. V.

Otugen, M. V.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Polak, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Qin, H.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Qu, S. L.

Radeva, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Rasing, Th.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Renganathan, B.

R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
[CrossRef]

Rooijmans, J. S. A.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Sastikumar, D.

R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
[CrossRef]

Shao, L. Y.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Sheverev, V.

Slaman, M.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

Some, S.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Stepaniuk, V.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Tang, Y. K.

X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Trouillet, A.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

Tsai, H. L.

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536–538 (2008).
[CrossRef]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
[CrossRef]

Veillas, C.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

Wang, S.

Wang, X. G.

X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
[CrossRef]

Webb, D. J.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Wei, L.

Wei, T.

Westerwaal, R. J.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Xiao, H.

Xu, Y.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Yang, J.

Yoon, Y.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Zhang, A. P.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Zhao, L.

Zhou, C. D.

X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
[CrossRef]

Zhou, D. P.

Appl. Opt.

Appl. Phys. Lett.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Curr. Appl. Phys.

R. Mohandoss, S. Dhanuskodi, B. Renganathan, and D. Sastikumar, “Gas sensing property of lithium tetraborate clad modified fiber optic sensor,” Curr. Appl. Phys. 13, 957–963 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photon. Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Int. J. Hydrogen Energy

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and Th. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38, 4201–4212 (2013).
[CrossRef]

J. Appl. Phys.

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Surface plasmon resonance hydrogen sensor using an optical fibre,” Meas. Sci. Technol. 13, 118–124 (2002).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Opt. Commun.

X. G. Wang, Y. K. Tang, C. D. Zhou, and B. Liao, “Design and optimization of the optical fiber surface plasmon resonance hydrogen sensor based on wavelength modulation,” Opt. Commun. 298–299, 88–94 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702–1705 (2002).
[CrossRef]

Sci. Rep.

S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, “Highly sensitive and selective gas sensor using hydrophilic and hydrophobic grapheme,” Sci. Rep. 3, 1868 (2013).

Vacuum

A. H. Ammar, M. S. Abo-Ghazala, A. A. M. Farag, N. M. Abdel-Moniem, and E. M. Farag, “Effect of gas type, pressure and temperature on the electrical characteristics of Al-doped SnO2 thin films deposited by RGTO method for gas sensor application,” Vacuum 94, 30–40 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup for fabrication of fiber taper and spectrum detection.

Fig. 2.
Fig. 2.

Schematic and microscopic image of the fiber taper.

Fig. 3.
Fig. 3.

Reflective spectrum of taper with different lengths.

Fig. 4.
Fig. 4.

Spatial frequency spectrum of the trench-embedding fiber taper.

Fig. 5.
Fig. 5.

Change in wavelength of the interference fringe with increase in RI for sensor 1. The inset is the reflection spectra with different mixture ratios of N2 and He gases.

Fig. 6.
Fig. 6.

Change in wavelength of the interference fringe with decrease in temperature.

Tables (2)

Tables Icon

Table 1. Mixture Ratios and RI Values of N2 and He

Tables Icon

Table 2. Sensitivities of Sensors with Different Taper Lengths

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I=i=1nIi+i=1n1j=i+1nIi·Ij2cos(Δφij),

Metrics